Abstract

We demonstrate that the use of negative feedback extends the detection bandwidth of an atomic magnetometer in a spin-exchange relaxation free (SERF) regime. A flat-frequency response from zero to 190 Hz was achieved, which is nearly a three-fold enhancement while maintaining sensitivity, 3 fT/Hz1/2 at 100 Hz. With the extension of the bandwidth, the linear correlation between measured signals and a magne-tocardiographic field synthesized for comparison was increased from 0.21 to 0.74. This result supports the feasibility of measuring weak biomagnetic signals containing multiple frequency components using a SERF atomic magnetometer under negative feedback.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-channel spin exchange relaxation free magnetometer towards two-dimensional vector magnetoencephalography

Guiying Zhang, Shengjie Huang, Feixiang Xu, Zhenghui Hu, and Qiang Lin
Opt. Express 27(2) 597-607 (2019)

Spin-exchange relaxation-free magnetic gradiometer with dual-beam and closed-loop Faraday modulation

Jiancheng Fang, Shuangai Wan, Jie Qin, Chen Zhang, and Wei Quan
J. Opt. Soc. Am. B 31(3) 512-516 (2014)

Acousto-optic modulation detection method in an all-optical K-Rb hybrid atomic magnetometer using uniform design method

Han Yao, Yang Li, Danyue Ma, Jiashu Cai, Junpeng Zhao, and Ming Ding
Opt. Express 26(22) 28682-28692 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Cohen, “Magnetoencephalography: Detection of the Brain’s Electrical Activity with a Superconducting Magnetometer Brain’s Electrical Activity with a Superconducting Magnetometer,” Science 175, 664–666 (1972).
    [Crossref] [PubMed]
  2. M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
    [Crossref]
  3. F. Darvas, D. Pantazis, E. Kucukaltun-Yildirim, and R. M. Leahy, “Mapping human brain function with MEG and EEG: methods and validation,” NeuroImage 23, S289–S299 (2004).
    [Crossref] [PubMed]
  4. Y.-H. Lee, J.-M. Kim, K. Kim, H. Kwon, K.-K. Yu, I.-S. Kim, and Y.-K. Park, “64-channel magnetocardiogram system based on double relaxation oscillation SQUID planar gradiometers,” Supercond. Sci. Technol. 19, S284–S288 (2006).
    [Crossref]
  5. I.-S. Kim, C.-H. Lee, and Y.-H. Lee, “Development of a rat biomagnetic measurement system using a high-TCSQUID magnetometer,” Supercond. Sci. Technol. 23, 085001 (2010).
    [Crossref]
  6. K. Sternickel and A. I. Braginski, “Biomagnetism using SQUIDs: status and perspectives,” Supercond. Sci. Technol. 19, S160–S171 (2006).
    [Crossref]
  7. S. Xu, C. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the Earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78, 013404 (2008).
    [Crossref]
  8. L. R. Hunter, “Tests of time-reversal invariance in atoms, molecules, and the neutron,” Science 252, 73–79 (1991).
    [Crossref] [PubMed]
  9. G. Bison, R. Wynands, and A. Weis, “Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor,” Opt. Express 11, 904–909 (2003).
    [Crossref] [PubMed]
  10. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
    [Crossref]
  11. K. Kamada, Y. Ito, and T. Kobayashi, “Human MCG measurements with a high-sensitivity potassium atomic magnetometer,” Physiol. Meas. 33, 1063–1071 (2012).
    [Crossref] [PubMed]
  12. K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
    [Crossref]
  13. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
    [Crossref] [PubMed]
  14. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
    [Crossref]
  15. W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16, 1877–1891 (1977).
    [Crossref]
  16. F. A. Franz and C. Volk, “Electronic spin relaxation of the 42S1/2 state of K induced by K-He and K-Ne collisions,” Phys. Rev. A 26, 85–92 (1982).
    [Crossref]
  17. S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
    [Crossref]
  18. A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, “Polarization of 3He by Spin Exchange with Optically Pumped Rb and K Vapors,” Phys. Rev. Lett. 80, 2801–2804 (1998).
    [Crossref]
  19. J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum 77, 113106 (2006).
    [Crossref]
  20. P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103 (2005).
    [Crossref]
  21. R. Jiménez-Martínez, W. C. Griffith, S. Knappe, J. Kitching, and M. Prouty, “High-bandwidth optical magnetometer,” J. Opt. Soc. Am. B 29, 3398–3403 (2012).
    [Crossref]
  22. K. Kamada, S. Taue, and T. Kobayashi, “Optimization of Bandwidth and Signal Responses of Optically Pumped Atomic Magnetometers for Biomagnetic Applications,” Jpn. J. Appl. Phys 50, 056602 (2011).
    [Crossref]
  23. O. Alem, K. Sauer, and M. Romalis, “Spin damping in an rf atomic magnetometer,” Phys. Rev. A 87, 013413 (2013).
    [Crossref]
  24. M. Ledbetter, I. Savukov, V. Acosta, D. Budker, and M. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
    [Crossref]

2014 (1)

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

2013 (1)

O. Alem, K. Sauer, and M. Romalis, “Spin damping in an rf atomic magnetometer,” Phys. Rev. A 87, 013413 (2013).
[Crossref]

2012 (2)

R. Jiménez-Martínez, W. C. Griffith, S. Knappe, J. Kitching, and M. Prouty, “High-bandwidth optical magnetometer,” J. Opt. Soc. Am. B 29, 3398–3403 (2012).
[Crossref]

K. Kamada, Y. Ito, and T. Kobayashi, “Human MCG measurements with a high-sensitivity potassium atomic magnetometer,” Physiol. Meas. 33, 1063–1071 (2012).
[Crossref] [PubMed]

2011 (1)

K. Kamada, S. Taue, and T. Kobayashi, “Optimization of Bandwidth and Signal Responses of Optically Pumped Atomic Magnetometers for Biomagnetic Applications,” Jpn. J. Appl. Phys 50, 056602 (2011).
[Crossref]

2010 (2)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

I.-S. Kim, C.-H. Lee, and Y.-H. Lee, “Development of a rat biomagnetic measurement system using a high-TCSQUID magnetometer,” Supercond. Sci. Technol. 23, 085001 (2010).
[Crossref]

2008 (2)

S. Xu, C. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the Earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78, 013404 (2008).
[Crossref]

M. Ledbetter, I. Savukov, V. Acosta, D. Budker, and M. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[Crossref]

2007 (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

2006 (3)

K. Sternickel and A. I. Braginski, “Biomagnetism using SQUIDs: status and perspectives,” Supercond. Sci. Technol. 19, S160–S171 (2006).
[Crossref]

Y.-H. Lee, J.-M. Kim, K. Kim, H. Kwon, K.-K. Yu, I.-S. Kim, and Y.-K. Park, “64-channel magnetocardiogram system based on double relaxation oscillation SQUID planar gradiometers,” Supercond. Sci. Technol. 19, S284–S288 (2006).
[Crossref]

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum 77, 113106 (2006).
[Crossref]

2005 (1)

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103 (2005).
[Crossref]

2004 (1)

F. Darvas, D. Pantazis, E. Kucukaltun-Yildirim, and R. M. Leahy, “Mapping human brain function with MEG and EEG: methods and validation,” NeuroImage 23, S289–S299 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

1998 (2)

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, “Polarization of 3He by Spin Exchange with Optically Pumped Rb and K Vapors,” Phys. Rev. Lett. 80, 2801–2804 (1998).
[Crossref]

1993 (1)

M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

1991 (1)

L. R. Hunter, “Tests of time-reversal invariance in atoms, molecules, and the neutron,” Science 252, 73–79 (1991).
[Crossref] [PubMed]

1982 (1)

F. A. Franz and C. Volk, “Electronic spin relaxation of the 42S1/2 state of K induced by K-He and K-Ne collisions,” Phys. Rev. A 26, 85–92 (1982).
[Crossref]

1977 (1)

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16, 1877–1891 (1977).
[Crossref]

1972 (1)

D. Cohen, “Magnetoencephalography: Detection of the Brain’s Electrical Activity with a Superconducting Magnetometer Brain’s Electrical Activity with a Superconducting Magnetometer,” Science 175, 664–666 (1972).
[Crossref] [PubMed]

Acosta, V.

M. Ledbetter, I. Savukov, V. Acosta, D. Budker, and M. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[Crossref]

Alem, O.

O. Alem, K. Sauer, and M. Romalis, “Spin damping in an rf atomic magnetometer,” Phys. Rev. A 87, 013413 (2013).
[Crossref]

Allred, J. C.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

Appelt, S.

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, “Polarization of 3He by Spin Exchange with Optically Pumped Rb and K Vapors,” Phys. Rev. Lett. 80, 2801–2804 (1998).
[Crossref]

Baranga, A. B.-A.

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

Begus, S.

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Ben-Amar Baranga, A.

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, “Polarization of 3He by Spin Exchange with Optically Pumped Rb and K Vapors,” Phys. Rev. Lett. 80, 2801–2804 (1998).
[Crossref]

Bison, G.

Braginski, A. I.

K. Sternickel and A. I. Braginski, “Biomagnetism using SQUIDs: status and perspectives,” Supercond. Sci. Technol. 19, S160–S171 (2006).
[Crossref]

Budker, D.

S. Xu, C. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the Earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78, 013404 (2008).
[Crossref]

M. Ledbetter, I. Savukov, V. Acosta, D. Budker, and M. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[Crossref]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum 77, 113106 (2006).
[Crossref]

Cates, G. D.

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, “Polarization of 3He by Spin Exchange with Optically Pumped Rb and K Vapors,” Phys. Rev. Lett. 80, 2801–2804 (1998).
[Crossref]

Cohen, D.

D. Cohen, “Magnetoencephalography: Detection of the Brain’s Electrical Activity with a Superconducting Magnetometer Brain’s Electrical Activity with a Superconducting Magnetometer,” Science 175, 664–666 (1972).
[Crossref] [PubMed]

Corsini, E.

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum 77, 113106 (2006).
[Crossref]

Crawford, C.

S. Xu, C. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the Earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78, 013404 (2008).
[Crossref]

Dang, H. B.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

Darvas, F.

F. Darvas, D. Pantazis, E. Kucukaltun-Yildirim, and R. M. Leahy, “Mapping human brain function with MEG and EEG: methods and validation,” NeuroImage 23, S289–S299 (2004).
[Crossref] [PubMed]

Erickson, C. J.

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, “Polarization of 3He by Spin Exchange with Optically Pumped Rb and K Vapors,” Phys. Rev. Lett. 80, 2801–2804 (1998).
[Crossref]

Franz, F. A.

F. A. Franz and C. Volk, “Electronic spin relaxation of the 42S1/2 state of K induced by K-He and K-Ne collisions,” Phys. Rev. A 26, 85–92 (1982).
[Crossref]

Griffith, W. C.

Hämäläinen, M.

M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Happer, W.

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, “Polarization of 3He by Spin Exchange with Optically Pumped Rb and K Vapors,” Phys. Rev. Lett. 80, 2801–2804 (1998).
[Crossref]

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16, 1877–1891 (1977).
[Crossref]

Hari, R.

M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Higbie, J. M.

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum 77, 113106 (2006).
[Crossref]

Hollberg, L.

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103 (2005).
[Crossref]

Hunter, L. R.

L. R. Hunter, “Tests of time-reversal invariance in atoms, molecules, and the neutron,” Science 252, 73–79 (1991).
[Crossref] [PubMed]

Ilmoniemi, R. J.

M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Ito, Y.

K. Kamada, Y. Ito, and T. Kobayashi, “Human MCG measurements with a high-sensitivity potassium atomic magnetometer,” Physiol. Meas. 33, 1063–1071 (2012).
[Crossref] [PubMed]

Jazbinsek, V.

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Jiménez-Martínez, R.

Kamada, K.

K. Kamada, Y. Ito, and T. Kobayashi, “Human MCG measurements with a high-sensitivity potassium atomic magnetometer,” Physiol. Meas. 33, 1063–1071 (2012).
[Crossref] [PubMed]

K. Kamada, S. Taue, and T. Kobayashi, “Optimization of Bandwidth and Signal Responses of Optically Pumped Atomic Magnetometers for Biomagnetic Applications,” Jpn. J. Appl. Phys 50, 056602 (2011).
[Crossref]

Kim, I.-S.

I.-S. Kim, C.-H. Lee, and Y.-H. Lee, “Development of a rat biomagnetic measurement system using a high-TCSQUID magnetometer,” Supercond. Sci. Technol. 23, 085001 (2010).
[Crossref]

Y.-H. Lee, J.-M. Kim, K. Kim, H. Kwon, K.-K. Yu, I.-S. Kim, and Y.-K. Park, “64-channel magnetocardiogram system based on double relaxation oscillation SQUID planar gradiometers,” Supercond. Sci. Technol. 19, S284–S288 (2006).
[Crossref]

Kim, J.-M.

Y.-H. Lee, J.-M. Kim, K. Kim, H. Kwon, K.-K. Yu, I.-S. Kim, and Y.-K. Park, “64-channel magnetocardiogram system based on double relaxation oscillation SQUID planar gradiometers,” Supercond. Sci. Technol. 19, S284–S288 (2006).
[Crossref]

Kim, K.

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Y.-H. Lee, J.-M. Kim, K. Kim, H. Kwon, K.-K. Yu, I.-S. Kim, and Y.-K. Park, “64-channel magnetocardiogram system based on double relaxation oscillation SQUID planar gradiometers,” Supercond. Sci. Technol. 19, S284–S288 (2006).
[Crossref]

Kitching, J.

R. Jiménez-Martínez, W. C. Griffith, S. Knappe, J. Kitching, and M. Prouty, “High-bandwidth optical magnetometer,” J. Opt. Soc. Am. B 29, 3398–3403 (2012).
[Crossref]

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103 (2005).
[Crossref]

Knappe, S.

Knuutila, J.

M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Kobayashi, T.

K. Kamada, Y. Ito, and T. Kobayashi, “Human MCG measurements with a high-sensitivity potassium atomic magnetometer,” Physiol. Meas. 33, 1063–1071 (2012).
[Crossref] [PubMed]

K. Kamada, S. Taue, and T. Kobayashi, “Optimization of Bandwidth and Signal Responses of Optically Pumped Atomic Magnetometers for Biomagnetic Applications,” Jpn. J. Appl. Phys 50, 056602 (2011).
[Crossref]

Kornack, T. W.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

Kucukaltun-Yildirim, E.

F. Darvas, D. Pantazis, E. Kucukaltun-Yildirim, and R. M. Leahy, “Mapping human brain function with MEG and EEG: methods and validation,” NeuroImage 23, S289–S299 (2004).
[Crossref] [PubMed]

Kwon, H.

Y.-H. Lee, J.-M. Kim, K. Kim, H. Kwon, K.-K. Yu, I.-S. Kim, and Y.-K. Park, “64-channel magnetocardiogram system based on double relaxation oscillation SQUID planar gradiometers,” Supercond. Sci. Technol. 19, S284–S288 (2006).
[Crossref]

Leahy, R. M.

F. Darvas, D. Pantazis, E. Kucukaltun-Yildirim, and R. M. Leahy, “Mapping human brain function with MEG and EEG: methods and validation,” NeuroImage 23, S289–S299 (2004).
[Crossref] [PubMed]

Ledbetter, M.

M. Ledbetter, I. Savukov, V. Acosta, D. Budker, and M. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[Crossref]

Lee, C.-H.

I.-S. Kim, C.-H. Lee, and Y.-H. Lee, “Development of a rat biomagnetic measurement system using a high-TCSQUID magnetometer,” Supercond. Sci. Technol. 23, 085001 (2010).
[Crossref]

Lee, S.-K.

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Lee, Y.-H.

I.-S. Kim, C.-H. Lee, and Y.-H. Lee, “Development of a rat biomagnetic measurement system using a high-TCSQUID magnetometer,” Supercond. Sci. Technol. 23, 085001 (2010).
[Crossref]

Y.-H. Lee, J.-M. Kim, K. Kim, H. Kwon, K.-K. Yu, I.-S. Kim, and Y.-K. Park, “64-channel magnetocardiogram system based on double relaxation oscillation SQUID planar gradiometers,” Supercond. Sci. Technol. 19, S284–S288 (2006).
[Crossref]

Lounasmaa, O. V.

M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Lyman, R. N.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

Maloof, A. C.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

Pantazis, D.

F. Darvas, D. Pantazis, E. Kucukaltun-Yildirim, and R. M. Leahy, “Mapping human brain function with MEG and EEG: methods and validation,” NeuroImage 23, S289–S299 (2004).
[Crossref] [PubMed]

Park, Y.-K.

Y.-H. Lee, J.-M. Kim, K. Kim, H. Kwon, K.-K. Yu, I.-S. Kim, and Y.-K. Park, “64-channel magnetocardiogram system based on double relaxation oscillation SQUID planar gradiometers,” Supercond. Sci. Technol. 19, S284–S288 (2006).
[Crossref]

Pines, A.

S. Xu, C. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the Earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78, 013404 (2008).
[Crossref]

Prouty, M.

Rochester, S.

S. Xu, C. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the Earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78, 013404 (2008).
[Crossref]

Romalis, M.

O. Alem, K. Sauer, and M. Romalis, “Spin damping in an rf atomic magnetometer,” Phys. Rev. A 87, 013413 (2013).
[Crossref]

M. Ledbetter, I. Savukov, V. Acosta, D. Budker, and M. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[Crossref]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

Romalis, M. V.

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, “Polarization of 3He by Spin Exchange with Optically Pumped Rb and K Vapors,” Phys. Rev. Lett. 80, 2801–2804 (1998).
[Crossref]

Sauer, K.

O. Alem, K. Sauer, and M. Romalis, “Spin damping in an rf atomic magnetometer,” Phys. Rev. A 87, 013413 (2013).
[Crossref]

Savukov, I.

M. Ledbetter, I. Savukov, V. Acosta, D. Budker, and M. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[Crossref]

Schwindt, P. D. D.

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103 (2005).
[Crossref]

Sternickel, K.

K. Sternickel and A. I. Braginski, “Biomagnetism using SQUIDs: status and perspectives,” Supercond. Sci. Technol. 19, S160–S171 (2006).
[Crossref]

Tam, A. C.

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16, 1877–1891 (1977).
[Crossref]

Taue, S.

K. Kamada, S. Taue, and T. Kobayashi, “Optimization of Bandwidth and Signal Responses of Optically Pumped Atomic Magnetometers for Biomagnetic Applications,” Jpn. J. Appl. Phys 50, 056602 (2011).
[Crossref]

Trontelj, Z.

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Volk, C.

F. A. Franz and C. Volk, “Electronic spin relaxation of the 42S1/2 state of K induced by K-He and K-Ne collisions,” Phys. Rev. A 26, 85–92 (1982).
[Crossref]

Weis, A.

Wynands, R.

Xia, H.

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Xu, S.

S. Xu, C. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the Earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78, 013404 (2008).
[Crossref]

Yashchuk, V.

S. Xu, C. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the Earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78, 013404 (2008).
[Crossref]

Young, A. R.

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, “Polarization of 3He by Spin Exchange with Optically Pumped Rb and K Vapors,” Phys. Rev. Lett. 80, 2801–2804 (1998).
[Crossref]

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

Yu, K.-K.

Y.-H. Lee, J.-M. Kim, K. Kim, H. Kwon, K.-K. Yu, I.-S. Kim, and Y.-K. Park, “64-channel magnetocardiogram system based on double relaxation oscillation SQUID planar gradiometers,” Supercond. Sci. Technol. 19, S284–S288 (2006).
[Crossref]

Appl. Phys. Lett. (1)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys (1)

K. Kamada, S. Taue, and T. Kobayashi, “Optimization of Bandwidth and Signal Responses of Optically Pumped Atomic Magnetometers for Biomagnetic Applications,” Jpn. J. Appl. Phys 50, 056602 (2011).
[Crossref]

Nat. Phys. (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

NeuroImage (2)

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

F. Darvas, D. Pantazis, E. Kucukaltun-Yildirim, and R. M. Leahy, “Mapping human brain function with MEG and EEG: methods and validation,” NeuroImage 23, S289–S299 (2004).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. A (6)

O. Alem, K. Sauer, and M. Romalis, “Spin damping in an rf atomic magnetometer,” Phys. Rev. A 87, 013413 (2013).
[Crossref]

M. Ledbetter, I. Savukov, V. Acosta, D. Budker, and M. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[Crossref]

S. Xu, C. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the Earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78, 013404 (2008).
[Crossref]

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16, 1877–1891 (1977).
[Crossref]

F. A. Franz and C. Volk, “Electronic spin relaxation of the 42S1/2 state of K induced by K-He and K-Ne collisions,” Phys. Rev. A 26, 85–92 (1982).
[Crossref]

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

Phys. Rev. Lett. (2)

A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer, “Polarization of 3He by Spin Exchange with Optically Pumped Rb and K Vapors,” Phys. Rev. Lett. 80, 2801–2804 (1998).
[Crossref]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

Physiol. Meas. (1)

K. Kamada, Y. Ito, and T. Kobayashi, “Human MCG measurements with a high-sensitivity potassium atomic magnetometer,” Physiol. Meas. 33, 1063–1071 (2012).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).
[Crossref]

Rev. Sci. Instrum (1)

J. M. Higbie, E. Corsini, and D. Budker, “Robust, high-speed, all-optical atomic magnetometer,” Rev. Sci. Instrum 77, 113106 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Instrum. 76, 126103 (2005).
[Crossref]

Science (2)

D. Cohen, “Magnetoencephalography: Detection of the Brain’s Electrical Activity with a Superconducting Magnetometer Brain’s Electrical Activity with a Superconducting Magnetometer,” Science 175, 664–666 (1972).
[Crossref] [PubMed]

L. R. Hunter, “Tests of time-reversal invariance in atoms, molecules, and the neutron,” Science 252, 73–79 (1991).
[Crossref] [PubMed]

Supercond. Sci. Technol. (3)

Y.-H. Lee, J.-M. Kim, K. Kim, H. Kwon, K.-K. Yu, I.-S. Kim, and Y.-K. Park, “64-channel magnetocardiogram system based on double relaxation oscillation SQUID planar gradiometers,” Supercond. Sci. Technol. 19, S284–S288 (2006).
[Crossref]

I.-S. Kim, C.-H. Lee, and Y.-H. Lee, “Development of a rat biomagnetic measurement system using a high-TCSQUID magnetometer,” Supercond. Sci. Technol. 23, 085001 (2010).
[Crossref]

K. Sternickel and A. I. Braginski, “Biomagnetism using SQUIDs: status and perspectives,” Supercond. Sci. Technol. 19, S160–S171 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the setup for a flat-response magnetometer with SERF regime. HWP, half-wave plate; QWP, quarter-wave plate; PD, photodiode; Bt, test field; FG, function generator; Vfg, output of function generator
Fig. 2
Fig. 2 (a) Typical optical rotation signal as a function of By in the SERF regime. The red solid line represents the theoretical results given by the steady state solution of the Bloch equation. The inset shows the optical rotation in a near zero field and linear fit. (b) Signal response of the amplifier in Fig. 1 as a function of frequency for four different amplifier gains.
Fig. 3
Fig. 3 Signal response to the input oscillating fields with amplitude of 600 pT for multiple frequencies. The incident beam intensities of the pump and probe beams were estimated to be 33 mW/cm2 and 5 mW/cm2, respectively. The dashed line is a fit to Lorentzians and fC indicates the half width at half maximum (HWHM) of the Lorentzian. It is possible to regard HWHM as the cut-off frequency of the single pole amplifier. On the black line, open-loop, fC = 72 Hz, and increased to 195 Hz on the blue line, closed-loop.
Fig. 4
Fig. 4 The test field, a MCG-like signal with a peak-to-peak amplitude of 500 pT and 0.1 s period between R peaks, was measured with several values of β. (a) The test field is composed of multiple frequency component. (b) When β is zero, open-loop, the low frequency response causes the distortion, and a higher frequency than the HWHM point causes the signal delay. As β continues to increase up to 3.5 nT/V, the distortion is reduced (c) signals become into-phase.
Fig. 5
Fig. 5 The noise spectrum of the atomic magnetometer with (orange line) and without (blue line) negative controlled feedback.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

B f b = β V out ,
G f b ( f ) = G 0 ( 1 + β G 0 ) ( 1 + j f ( 1 + β G 0 ) f C ) .

Metrics