Abstract

An image processing method is proposed to realize polarizer-free imaging of liquid crystal lens. Images Il and Inl are captured sequentially in the lens and non-lens states of the LC lens, respectively, and are used to generate a final high contrast image. The proposal is tested by experiments. Clear and well focused images are obtained, even though no polarizer is employed in the imaging system.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Liquid-crystal intraocular adaptive lens with wireless control

Aleksey N. Simonov, Gleb Vdovin, and Mikhail Loktev
Opt. Express 15(12) 7468-7478 (2007)

Focus tuning by liquid crystal lens in imaging system

Mao Ye, Bin Wang, Masaru Uchida, Satoshi Yanase, Shingo Takahashi, and Susumu Sato
Appl. Opt. 51(31) 7630-7635 (2012)

New application of liquid crystal lens of active polarized filter for micro camera

Giichi Shibuya, Nobuyuki Okuzawa, and Mitsuo Hayashi
Opt. Express 20(25) 27520-27528 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. Lin, M. Chen, and Y. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
    [Crossref]
  2. G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
    [Crossref] [PubMed]
  3. L. Li, D. Bryant, T. Van Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng. 52(3), 035007 (2013).
    [Crossref]
  4. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
    [Crossref] [PubMed]
  5. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  6. T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
    [Crossref]
  7. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
    [Crossref] [PubMed]
  8. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
    [Crossref] [PubMed]
  9. M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys. 52(4R), 042501 (2013).
    [Crossref]
  10. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [Crossref]
  11. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
    [Crossref] [PubMed]
  12. C.-H. Lin, Y.-Y. Wang, and C.-W. Hsieh, “Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals,” Opt. Lett. 36(4), 502–504 (2011).
    [Crossref] [PubMed]
  13. M. Ye and S. Sato, “Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations,” Jpn. J. Appl. Phys. 42(10), 6439–6440 (2003).
    [Crossref]
  14. H. Ren, Y. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
    [Crossref]
  15. M. Born and E. Wolf, Principles of Optics (Pergamon, 1975), Chap. 9.
  16. S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53(19), 1794–1796 (1988).
    [Crossref]
  17. H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
    [Crossref]
  18. R. Zhu, S. Xu, Q. Hong, S. T. Wu, C. Lee, C. M. Yang, C. C. Lo, and A. Lien, “Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53(7), 1388–1395 (2014).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

L. Li, D. Bryant, T. Van Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng. 52(3), 035007 (2013).
[Crossref]

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys. 52(4R), 042501 (2013).
[Crossref]

2012 (1)

2011 (3)

2010 (1)

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

2009 (1)

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

2006 (2)

H. Ren, Y. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

M. Ye and S. Sato, “Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations,” Jpn. J. Appl. Phys. 42(10), 6439–6440 (2003).
[Crossref]

1998 (1)

1989 (1)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

1988 (1)

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53(19), 1794–1796 (1988).
[Crossref]

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Ayräs, P.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Bos, P. J.

L. Li, D. Bryant, T. Van Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng. 52(3), 035007 (2013).
[Crossref]

Bryant, D.

L. Li, D. Bryant, T. Van Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng. 52(3), 035007 (2013).
[Crossref]

Chen, H. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Chen, M.

H. Lin, M. Chen, and Y. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Duston, D.

L. Li, D. Bryant, T. Van Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng. 52(3), 035007 (2013).
[Crossref]

Giridhar, M. S.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Guralnik, I. R.

Haddock, J. N.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Hong, Q.

Honkanen, S.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Hsieh, C.-W.

Hsu, H. K.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Kippelen, B.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Kunitsuka, H.

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys. 52(4R), 042501 (2013).
[Crossref]

Lee, C.

Li, G.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Li, L.

L. Li, D. Bryant, T. Van Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng. 52(3), 035007 (2013).
[Crossref]

Li, W. Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Li, Y.

Lien, A.

Lin, C. L.

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

Lin, C.-H.

Lin, H.

H. Lin, M. Chen, and Y. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Lin, H. C.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, Y.

H. Lin, M. Chen, and Y. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

H. Ren, Y. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

Lin, Y. H.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lo, C. C.

Loktev, M. Y.

Mathine, D. L.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Meredith, G. R.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Naumov, A. F.

Nose, T.

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

Peyghambarian, N.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Ren, H.

H. Ren, Y. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

Sato, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys. 52(4R), 042501 (2013).
[Crossref]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref] [PubMed]

M. Ye and S. Sato, “Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations,” Jpn. J. Appl. Phys. 42(10), 6439–6440 (2003).
[Crossref]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Schwiegerling, J.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Takahashi, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys. 52(4R), 042501 (2013).
[Crossref]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

Tsou, Y. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Uchida, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys. 52(4R), 042501 (2013).
[Crossref]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

Valley, P.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Van Heugten, T.

L. Li, D. Bryant, T. Van Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng. 52(3), 035007 (2013).
[Crossref]

Vdovin, G.

Wang, B.

Wang, Y.-Y.

Williby, G.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Wu, C. S.

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53(19), 1794–1796 (1988).
[Crossref]

Wu, S. T.

R. Zhu, S. Xu, Q. Hong, S. T. Wu, C. Lee, C. M. Yang, C. C. Lo, and A. Lien, “Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53(7), 1388–1395 (2014).
[Crossref] [PubMed]

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref] [PubMed]

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

H. Ren, Y. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53(19), 1794–1796 (1988).
[Crossref]

Xianyu, H.

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

Xu, S.

Yanase, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys. 52(4R), 042501 (2013).
[Crossref]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

Yang, C. M.

Ye, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys. 52(4R), 042501 (2013).
[Crossref]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref] [PubMed]

M. Ye and S. Sato, “Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations,” Jpn. J. Appl. Phys. 42(10), 6439–6440 (2003).
[Crossref]

Zhu, R.

Appl. Opt. (3)

Appl. Phys. Lett. (3)

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53(19), 1794–1796 (1988).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

H. Ren, Y. Lin, and S. T. Wu, “Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels,” Appl. Phys. Lett. 88(6), 061123 (2006).
[Crossref]

Jpn. J. Appl. Phys. (3)

M. Ye and S. Sato, “Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations,” Jpn. J. Appl. Phys. 42(10), 6439–6440 (2003).
[Crossref]

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys. 52(4R), 042501 (2013).
[Crossref]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Liq. Cryst. (2)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

Opt. Eng. (1)

L. Li, D. Bryant, T. Van Heugten, D. Duston, and P. J. Bos, “Near-diffraction-limited tunable liquid crystal lens with simplified design,” Opt. Eng. 52(3), 035007 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Trans. Electr. Electron. Mater. (1)

H. Lin, M. Chen, and Y. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12(6), 234–240 (2011).
[Crossref]

Other (1)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975), Chap. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup of the imaging system.
Fig. 2
Fig. 2 Structure of LC lens. The LC lens of 2.0 mm aperture is driven by two voltages V1 and V2.
Fig. 3
Fig. 3 Properties of LC lens. The optical power and RMS aberration change with V2.
Fig. 4
Fig. 4 MTF50 changing with V2.
Fig. 5
Fig. 5 Images captured by the LC lens imaging system. (a) ISO 12233 chart image and the areas for MTF and contrast measurements; (b) slanted bar images; (c) wedge pattern images.
Fig. 6
Fig. 6 MTF comparison of the imaging system in the non-lens state, lens state and after image processing.
Fig. 7
Fig. 7 Resolving ability comparison of the imaging system in the non-lens state, lens state and after image processing.
Fig. 8
Fig. 8 Images in non-lens (a) and lens (b) states, and processed image (c).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I l = I e l + I o l
I nl = I e nl + I o nl .
I= I l I o l = I e l .
I= I l I o nl .
I= I l 0.5 I nl .
I'(u,v)={ 255 I(u,v)>255/2 2I(u,v) 0I(u,v)255/2 0 I(u,v)<0 ,

Metrics