Abstract

Silicon Mach-Zehnder modulators (Si MZMs) with good linearity are designed and fabricated. 6.25 Gbaud Nyquist 16, 32 and 64-Quadrature Amplitude Modulation (QAM) optical signals were successfully generated by intensity modulation from the Si MZM, and the effective data rates are 22.61 Gb/s, 28.26 Gb/s and 33.91 Gb/s respectively. The subcarrier multiplexed technique and direct detection scheme were employed in this experiment. After 53.1 km transmission, the BERs of 16-QAM and 32-QAM are both below the 7% hard-decision forward error correction limit, while the back-to-back BER of 64-QAM is well below the 20% soft-decision forward error correction limit. These results demonstrated that the Si MZM can be used in the high-capacity low-cost short-haul intensity modulation and direct detection system.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental comparison of direct detection Nyquist SSB transmission based on silicon dual-drive and IQ Mach-Zehnder modulators with electrical packaging

Xiaoke Ruan, Ke Li, David J Thomson, Cosimo Lacava, Fanfan Meng, Iosif Demirtzioglou, Periklis Petropoulos, Yixiao Zhu, Graham T Reed, and Fan Zhang
Opt. Express 25(16) 19332-19342 (2017)

Experimental demonstration of a 10 Gb/s RSOA-based 16-QAM subcarrier multiplexed WDM PON

Jonathan M. Buset, Ziad A. El-Sahn, and David V. Plant
Opt. Express 22(1) 1-8 (2014)

Optical transmitter for 320-Gb/s PDM-RZ-16QAM generation using electrical binary drive signals

Hyeon Yeong Choi, Takehiro Tsuritani, and Itsuro Morita
Opt. Express 20(27) 28772-28778 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  2. P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012).
    [Crossref] [PubMed]
  3. H. Yi, Q. Long, W. Tan, L. Li, X. Wang, and Z. Zhou, “Demonstration of low power penalty of silicon Mach-Zehnder modulator in long-haul transmission,” Opt. Express 20(25), 27562–27568 (2012).
    [Crossref] [PubMed]
  4. T. Li, J. Zhang, H. Yi, W. Tan, Q. Long, Z. Zhou, X. Wang, and H. Wu, “Low-voltage, high speed, compact silicon modulator for BPSK modulation,” Opt. Express 21(20), 23410–23415 (2013).
    [Crossref] [PubMed]
  5. T. Li, J. Zhang, H. Yi, W. Tan, Q. Long, Z. Zhou, X. Wang, and H. Wu, “10-Gb/s 53.1-km BPSK transmission of silicon Mach-Zehnder modulator,” in Asia Communications and Photonics Conference (Optical Society of America, 2013), AW4A.3.
    [Crossref]
  6. K. Goi, H. Kusaka, A. Oka, Y. Terada, K. Ogawa, T.-Y. Liow, X. Tu, G. Lo, and D.-L. Kwong, “DQPSK/QPSK Modulation at 40-60 Gb/s using Low-Loss Nested Silicon Mach-Zehnder Modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OW4J.4.
    [Crossref]
  7. P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, Y. Baeyens, and Y. K. Chen, “Monolithic silicon photonic circuits enable 112-Gb/s PDM- QPSK transmission over 2560-km SSMF,” in European Conference on Optical Communications (2013), paper We.2.B.1.
  8. P. Dong, X. Liu, C. Sethumadhavan, L. L. Buhl, R. Aroca, Y. Baeyens, and Y.-K. Chen, “224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits,” in Nat. Fiber Opt. Eng. Conf., OSA Tech. Dig., Anaheim, CA (2013), Paper PDP5C.6.
    [Crossref]
  9. F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
    [Crossref]
  10. A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J. M. Fedeli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in 2012 IEEE 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 57–59.
    [Crossref]
  11. X. Ke, L. Yang, J. Sung, Y. Chen, Z. Cheng, C. Chow, C. Yeh, and H. Tsang, “Compatibility of silicon Mach-Zehnder modulators for advanced modulation formats,” J. Lightwave Technol. 31(15), 2550–2554 (2013).
    [Crossref]
  12. M. Erkilinc, R. Maher, M. Paskov, S. Kilmurray, S. Pachnicke, H. Griesser, B. Thomsen, P. Bayvel, and R. Killey, “Spectrally-efficient single-sideband subcarrier-multiplexed quasi-Nyquist QPSK with direct detection,” in European Conference and Exhibition on Optical Communication (2013), paper Tu3C4.
    [Crossref]
  13. M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21(3), 3818–3825 (2013).
    [Crossref] [PubMed]
  14. A. O. J. Wiberg, B.-E. Olsson, and P. A. Andrekson, “Single cycle subcarrier modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (2009), paper OTuE1.
    [Crossref]
  15. J. Li, S. Zhang, F. Zhang, and Z. Chen, “Comparison of transmission performances for CO-SCFDE and CO-OFDM systems,” IEEE Photon. Technol. Lett. 22(14), 1054–1056 (2010).
    [Crossref]
  16. D. Chang, F. Yu, Z. Xiao, Y. Li, N. Stojanovic, C. Xie, X. Shi, X. Xu, and Q. Xiong, “FPGA Verification of a Single QC-LDPC Code for 100 Gb/s Optical Systems without Error Floor down to BER of 10−15,” in Proceedings of OFC/NFOEC2011 (6–10 March 2011), OTuN2.

2013 (3)

2012 (2)

2010 (3)

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

J. Li, S. Zhang, F. Zhang, and Z. Chen, “Comparison of transmission performances for CO-SCFDE and CO-OFDM systems,” IEEE Photon. Technol. Lett. 22(14), 1054–1056 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Ayazi, A.

Baehr-Jones, T.

Basak, J.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Chen, L.

Chen, Y.

Chen, Y.-K.

Chen, Z.

J. Li, S. Zhang, F. Zhang, and Z. Chen, “Comparison of transmission performances for CO-SCFDE and CO-OFDM systems,” IEEE Photon. Technol. Lett. 22(14), 1054–1056 (2010).
[Crossref]

Cheng, Z.

Chow, C.

Dong, P.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Hochberg, M.

Ke, X.

Li, J.

J. Li, S. Zhang, F. Zhang, and Z. Chen, “Comparison of transmission performances for CO-SCFDE and CO-OFDM systems,” IEEE Photon. Technol. Lett. 22(14), 1054–1056 (2010).
[Crossref]

Li, L.

Li, T.

Liao, L.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Lim, A. E.-J.

Liu, A.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Lo, G.-Q.

Long, Q.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Mirshafiei, M.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Paniccia, M.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Rusch, L. A.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Streshinsky, M.

Sung, J.

Tan, W.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Tsang, H.

Vacondio, F.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Wang, X.

Wu, H.

Xuan, Z.

Yang, L.

Yeh, C.

Yi, H.

Zhang, F.

J. Li, S. Zhang, F. Zhang, and Z. Chen, “Comparison of transmission performances for CO-SCFDE and CO-OFDM systems,” IEEE Photon. Technol. Lett. 22(14), 1054–1056 (2010).
[Crossref]

Zhang, J.

Zhang, S.

J. Li, S. Zhang, F. Zhang, and Z. Chen, “Comparison of transmission performances for CO-SCFDE and CO-OFDM systems,” IEEE Photon. Technol. Lett. 22(14), 1054–1056 (2010).
[Crossref]

Zhou, Z.

IEEE J. Sel. Top. Quantum Electron. (1)

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Li, S. Zhang, F. Zhang, and Z. Chen, “Comparison of transmission performances for CO-SCFDE and CO-OFDM systems,” IEEE Photon. Technol. Lett. 22(14), 1054–1056 (2010).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Opt. Express (4)

Other (8)

A. O. J. Wiberg, B.-E. Olsson, and P. A. Andrekson, “Single cycle subcarrier modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (2009), paper OTuE1.
[Crossref]

D. Chang, F. Yu, Z. Xiao, Y. Li, N. Stojanovic, C. Xie, X. Shi, X. Xu, and Q. Xiong, “FPGA Verification of a Single QC-LDPC Code for 100 Gb/s Optical Systems without Error Floor down to BER of 10−15,” in Proceedings of OFC/NFOEC2011 (6–10 March 2011), OTuN2.

M. Erkilinc, R. Maher, M. Paskov, S. Kilmurray, S. Pachnicke, H. Griesser, B. Thomsen, P. Bayvel, and R. Killey, “Spectrally-efficient single-sideband subcarrier-multiplexed quasi-Nyquist QPSK with direct detection,” in European Conference and Exhibition on Optical Communication (2013), paper Tu3C4.
[Crossref]

A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J. M. Fedeli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in 2012 IEEE 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 57–59.
[Crossref]

T. Li, J. Zhang, H. Yi, W. Tan, Q. Long, Z. Zhou, X. Wang, and H. Wu, “10-Gb/s 53.1-km BPSK transmission of silicon Mach-Zehnder modulator,” in Asia Communications and Photonics Conference (Optical Society of America, 2013), AW4A.3.
[Crossref]

K. Goi, H. Kusaka, A. Oka, Y. Terada, K. Ogawa, T.-Y. Liow, X. Tu, G. Lo, and D.-L. Kwong, “DQPSK/QPSK Modulation at 40-60 Gb/s using Low-Loss Nested Silicon Mach-Zehnder Modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OW4J.4.
[Crossref]

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, Y. Baeyens, and Y. K. Chen, “Monolithic silicon photonic circuits enable 112-Gb/s PDM- QPSK transmission over 2560-km SSMF,” in European Conference on Optical Communications (2013), paper We.2.B.1.

P. Dong, X. Liu, C. Sethumadhavan, L. L. Buhl, R. Aroca, Y. Baeyens, and Y.-K. Chen, “224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits,” in Nat. Fiber Opt. Eng. Conf., OSA Tech. Dig., Anaheim, CA (2013), Paper PDP5C.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Cross-section diagram of the Si MZM; (b) Optical micrograph of the Si MZM with a CPW electrode.
Fig. 2
Fig. 2 (a) Output power versus input power of the SDH and third-order IMD for the Si MZM driven under single arm driving mode; (b) Measured E-O response of Si MZM.
Fig. 3
Fig. 3 Schematic of the experimental setup for Nyquist 16, 32, 64-QAM.
Fig. 4
Fig. 4 (a) Measured BER performances of Nyquist 16-QAM versus OSNR under single arm vs. push pull driving mode; (b) Measured BER performances of Nyquist 16-QAM versus OSNR of back-to-back vs. 53.1 km SSMF transmission under push pull driving mode; (c) Measured optical spectrums after 53.1 km SSMF transmission before vs. after waveshaper.
Fig. 5
Fig. 5 Measured BER performances versus OSNR of Nyquist 32-QAM. (a) Single arm driving mode vs. Push pull driving mode; (b) Back-to-back vs. 53.1 km SSMF transmission under push pull driving mode.
Fig. 6
Fig. 6 (a) Measured back-to-back BER versus OSNR of Nyquist 64-QAM under push pull driving Mode; (b) Comparison of 16, 32 and 64-QAM signals under push pull driving mode.

Metrics