Abstract

A high sensitive sensor is demonstrated by exploiting strong transverse magneto-optical Kerr effect on a ferromagnetic surface plasmon grating. The surface plasmon grating, made of a hybridized Au/Fe/Au layer, exhibits a very dispersive Kerr parameter variation near the surface plasmon polariton (SPP) wavelength via coherent scattering of the SPP on the grating structure. Interrogating this Kerr parameter can be utilized for detecting chemical or biological objects in a fluid medium. The experiment results show the minimal detectable mass concentration of sodium chloride in a saline solution is 4.27 × 10-3 %, corresponding to a refractive index change of 7.60 × 10−6 RIU. For an avidin-biotin interaction experiment, the sensitivity of avidin detection in PBS solution is 1.97 nM, which is limited by the index fluctuation of flowing media during measurement.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
    [CrossRef] [PubMed]
  2. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
    [CrossRef] [PubMed]
  3. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
    [CrossRef] [PubMed]
  4. K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today 60, 40–46 (2007).
  5. X. L. Shi, S. L. Zheng, H. Chi, X. F. Jin, and X. M. Zhang, “A wideband electro-optic modulator based on long range surface plasmon resonances,” J. Opt. 13(12), 125001 (2011).
    [CrossRef]
  6. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
  7. J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).
  8. J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
  9. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
    [CrossRef] [PubMed]
  10. D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
  11. V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321(7), 826–828 (2009).
    [CrossRef]
  12. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: The scattering-matrix method,” Sov. Phys. JETP 110(5), 816–824 (2010).
    [CrossRef]
  13. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).
  14. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  15. L. F. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
    [CrossRef]
  16. W. M. B. Yunus and A. B. Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt. 27(16), 3341–3343 (1988).
    [CrossRef] [PubMed]

2013 (2)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[CrossRef] [PubMed]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).

2011 (2)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[CrossRef] [PubMed]

X. L. Shi, S. L. Zheng, H. Chi, X. F. Jin, and X. M. Zhang, “A wideband electro-optic modulator based on long range surface plasmon resonances,” J. Opt. 13(12), 125001 (2011).
[CrossRef]

2010 (2)

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: The scattering-matrix method,” Sov. Phys. JETP 110(5), 816–824 (2010).
[CrossRef]

2009 (3)

V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321(7), 826–828 (2009).
[CrossRef]

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

2007 (3)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today 60, 40–46 (2007).

J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).

1999 (1)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).

1996 (1)

1995 (1)

1988 (1)

Akimov, I. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[CrossRef] [PubMed]

Allen, M.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).

Armelles, G.

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).

Bao, J. M.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Bayer, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[CrossRef] [PubMed]

Belotelov, V. I.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[CrossRef] [PubMed]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: The scattering-matrix method,” Sov. Phys. JETP 110(5), 816–824 (2010).
[CrossRef]

V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321(7), 826–828 (2009).
[CrossRef]

Bykov, D. A.

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: The scattering-matrix method,” Sov. Phys. JETP 110(5), 816–824 (2010).
[CrossRef]

Calle, A.

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

Cebollada, A.

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).

Chi, H.

X. L. Shi, S. L. Zheng, H. Chi, X. F. Jin, and X. M. Zhang, “A wideband electro-optic modulator based on long range surface plasmon resonances,” J. Opt. 13(12), 125001 (2011).
[CrossRef]

Chin, J. Y.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).

Clarke, R.

J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).

Clavero, C.

J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).

Co, D. T.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[CrossRef] [PubMed]

Doskolovich, L. L.

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: The scattering-matrix method,” Sov. Phys. JETP 110(5), 816–824 (2010).
[CrossRef]

Dregely, D.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).

Dridi, M.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[CrossRef] [PubMed]

Farina, D.

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

Garcia-Martin, A.

J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).

Garcia-Martin, J. M.

J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).

Gaylord, T. K.

Giessen, H.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).

Gonzalez-Diaz, J. B.

J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).

Gopal, A. V.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[CrossRef] [PubMed]

Grann, E. B.

Guo, X.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Hensley, J.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Homola, J.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).

Jin, X. F.

X. L. Shi, S. L. Zheng, H. Chi, X. F. Jin, and X. M. Zhang, “A wideband electro-optic modulator based on long range surface plasmon resonances,” J. Opt. 13(12), 125001 (2011).
[CrossRef]

Kalish, A. N.

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: The scattering-matrix method,” Sov. Phys. JETP 110(5), 816–824 (2010).
[CrossRef]

V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321(7), 826–828 (2009).
[CrossRef]

Kasture, S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[CrossRef] [PubMed]

Kim, C. H.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[CrossRef] [PubMed]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Kneipp, K.

K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today 60, 40–46 (2007).

Kotov, V. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[CrossRef] [PubMed]

V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321(7), 826–828 (2009).
[CrossRef]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).

Kumah, D. P.

J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).

Lechuga, L. M.

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

Li, L. F.

Lukaszew, R. A.

J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).

Ma, Y. G.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Moharam, M. G.

Montoya, J.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).

Odom, T. W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[CrossRef] [PubMed]

Parameswaran, K.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).

Pohl, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[CrossRef] [PubMed]

Pommet, D. A.

Qiu, M.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Rahman, A. B.

Ram, R.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).

Regatos, D.

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

Schatz, G. C.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[CrossRef] [PubMed]

Sepulveda, B.

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

Shi, X. L.

X. L. Shi, S. L. Zheng, H. Chi, X. F. Jin, and X. M. Zhang, “A wideband electro-optic modulator based on long range surface plasmon resonances,” J. Opt. 13(12), 125001 (2011).
[CrossRef]

Skuza, J. R.

J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).

Steinle, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).

Stritzker, B.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).

Suh, J. Y.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[CrossRef] [PubMed]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Tong, L. M.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Vengurlekar, A. S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[CrossRef] [PubMed]

Wasielewski, M. R.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[CrossRef] [PubMed]

Wehlus, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).

Weiss, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).

Wiley, B. J.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Yakovlev, D. R.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[CrossRef] [PubMed]

Yang, Q.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).

Yu, H. K.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Yunus, W. M. B.

Zhang, X. M.

X. L. Shi, S. L. Zheng, H. Chi, X. F. Jin, and X. M. Zhang, “A wideband electro-optic modulator based on long range surface plasmon resonances,” J. Opt. 13(12), 125001 (2011).
[CrossRef]

Zhang, X. N.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Zheng, S. L.

X. L. Shi, S. L. Zheng, H. Chi, X. F. Jin, and X. M. Zhang, “A wideband electro-optic modulator based on long range surface plasmon resonances,” J. Opt. 13(12), 125001 (2011).
[CrossRef]

Zhou, W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[CrossRef] [PubMed]

Zvezdin, A. K.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[CrossRef] [PubMed]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: The scattering-matrix method,” Sov. Phys. JETP 110(5), 816–824 (2010).
[CrossRef]

V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321(7), 826–828 (2009).
[CrossRef]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

J. Magn. Magn. Mater. (1)

V. I. Belotelov, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media,” J. Magn. Magn. Mater. 321(7), 826–828 (2009).
[CrossRef]

J. Opt. (1)

X. L. Shi, S. L. Zheng, H. Chi, X. F. Jin, and X. M. Zhang, “A wideband electro-optic modulator based on long range surface plasmon resonances,” J. Opt. 13(12), 125001 (2011).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nano Lett. (1)

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Nat. Commun. (1)

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).

Nat. Nanotechnol. (2)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[CrossRef] [PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[CrossRef] [PubMed]

Phys. Rev. B (1)

J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).

Phys. Today (1)

K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today 60, 40–46 (2007).

Sens. Actuators B (1)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).

Sov. Phys. JETP (1)

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: The scattering-matrix method,” Sov. Phys. JETP 110(5), 816–824 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration of the Au-Fe-Au hybridized grating: (a) the optical configuration of TMOKE measurement and (b) the device structure.

Fig. 2
Fig. 2

TMOKE enhanced by SPP excitation: (a) the reflectance spectrum varied by modulated magnetization, and (b) the dispersion curve of Kerr parameter.

Fig. 3
Fig. 3

Interrogation of antigens through the modulated TMOKE: (a)(b) schematic illustration of antigens specifically binding to antibodies which have been immobilize on the surface of Au-Fe-Au SPP grating, (c) shifted dispersion curve of the Kerr parameter due to the bonded antigens, and (d) varied Kerr parameter as a linear function of the antigen concentration near the SPP wavelength.

Fig. 4
Fig. 4

Design on the Au-Fe-Au grating structure: (a) the grating period and pitch, (b) the Kerr parameter with respect to the top Au and Fe thicknesses, (c) the SPP wavelength varied by the top Au and Fe thicknesses, and (d) the corresponding reflectance.

Fig. 5
Fig. 5

Process flow to make the Au-Fe-Au SPP grating and the electron scanning microscope image of a fabricated device.

Fig. 6
Fig. 6

Experimental setup for measuring the Kerr parameter. The device is packaged with a pre-defined PDMS channel sealed by a glass slide. The right-bottom inset shows the dispersion curve of the Kerr parameter measured on the Au-Fe-Au grating with DI water flowing on the top.

Fig. 7
Fig. 7

(a) Measured Kerr parameter of the Au/Fe/Au SPP grating after introduction of saline solutions with different NaCl concentrations; (b) Kerr parameters versus the mass concentrations (%) of NaCl in DI water.

Fig. 8
Fig. 8

(a) Dispersion curve of the Kerr parameter measured on the Au/Fe/Au SPR grating in PBS; (b) dynamic response of the Ker parameter after 50 nM avidin was introduced; (c) dynamic response of the Kerr parameter with respect to different solutions introduced to the chip; (d) speed of the Kerr parameter variation as a function of the avidin concentration in PBS. In (b)-(d), the launched wavelength was fixed at 773.5 nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε M =( ε 1 i ε xy (M) 0 i ε xy (M) ε 1 0 0 0 ε 1 ),
ε xy = ω p 2 τ ω H (1iωτ) 2 + H 2 ,
η=(R(+M)R(M))/R(0)
k s = k x I +m 2π Λ
H z (x,y)= u k s (x,y) e i k s x ,
u k s (x+Λ,y)= u k s (x,y).
ω s ( k s ,±M ) ω s ( k s )+C k s ε xy (±M) ω s ( k s ) ε 1

Metrics