Abstract

We report large-mode-area solid-core photonic crystal fibers made from fused silica that resist ultraviolet (UV) solarization even at relatively high optical powers. Using a process of hydrogen loading and UV irradiation of the fibers, we demonstrate stable single-mode transmission over hundreds of hours for fiber output powers of 10 mW at 280 nm and 125 mW at 313 nm (limited only by the available laser power). Fiber attenuation ranges from 0.9 dB/m to 0.13 dB/m at these wavelengths, and is unaffected by bending for radii above 50 mm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155–168 (2001).
    [CrossRef]
  2. E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28, 516–518 (1976).
    [CrossRef]
  3. H. Hanafusa, Y. Hibino, and F. Yamamoto, “Formation mechanism of drawing-induced defects in optical fibers,” J. Non-Cryst. Solids 95–96, 655–661 (1987).
    [CrossRef]
  4. K.-F. Klein, C. P. Gonschior, D. Beer, H.-S. Eckhardt, M. Belz, J. Shannon, V. Khalilov, M. Klein, and C. Jakob, “Silica-based UV-fibers for DUV applications: current status,” Proc. SPIE 8775, 87750B (2013).
    [CrossRef]
  5. N. Kuzuu, “OH content dependence of ArF-excimer-laser-induced absorption in type-III fused silica,” Proc. SPIE 2714, 71–79 (1995).
    [CrossRef]
  6. S. P. Faile, J. J. Schmidt, and D. M. Roy, “Irradiation effects in glasses: suppression by synthesis under high-pressure hydrogen,” Science 156, 1593–1595 (1967).
    [CrossRef] [PubMed]
  7. J. E. Shelby, “Radiation effects in hydrogen-impregnated vitreous silica,” J. Appl. Phys. 50, 3702–3706 (1979).
    [CrossRef]
  8. P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155, 376–385 (1998).
    [CrossRef]
  9. P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
    [CrossRef]
  10. M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photon. Technol. Lett. 13, 978–980 (2001).
    [CrossRef]
  11. Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
    [CrossRef]
  12. P. B. Lyons and L. D. Looney, “Enhanced radiation resistance of high-OH silica optical fibers,” Proc. SPIE 1791, 286–296 (1992).
    [CrossRef]
  13. A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii, “γ-radiation-induced absorption in pure-silica-core fibers in the visible spectral region: the effect of H2-loading,” IEEE Trans. Nucl. Sci. 45, 1576–1579 (1998).
    [CrossRef]
  14. H. Henschel, O. Köhn, and U. Weinand, “Radiation hardening of pure silica optical fibers by high-pressure hydrogen treatment,” IEEE Trans. Nucl. Sci. 49, 1401–1409 (2002).
    [CrossRef]
  15. D. L. Griscom, “A minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-IR absorption bands, with emphasis on self-trapped holes and how they can be controlled,” Phys. Res. Int. 2013, 379041 (2013).
    [CrossRef]
  16. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  17. N. Yamamoto, L. Tao, and A. P. Yalin, “Single-mode delivery of 250 nm light using a large mode area photonic crystal fiber,” Opt. Express 17, 16933–16940 (2009).
    [CrossRef] [PubMed]
  18. Commercial equipment, instruments, and materials are identified in this paper in order to specify the experimental procedure accurately. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
  19. C. P. Gonschior, D. Eimer, K.-F. Klein, T. Sun, and K. T. V. Grattan, “Characterization of UV single-mode and low-mode fibers,” Proc. SPIE 7559, 75590X (2010).
    [CrossRef]
  20. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003).
    [CrossRef]
  21. C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).
    [CrossRef] [PubMed]
  22. M. D. Nielsen, N. A. Mortensen, and J. R. Folkenberg, “Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications,” Opt. Lett. 28, 1645–1647 (2003).
    [CrossRef] [PubMed]
  23. L. Shang, I.-M. Chou, W. Lu, R. C. Burruss, and Y. Zhang, “Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523 K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions,” Geochim. Cosmochim. Acta 73, 5435–5443 (2009).
    [CrossRef]
  24. This connectorization method is suitable for our tests, but is not sufficiently robust for fibers intended for general laboratory use. To make patch cables for long-term experimental use, the fiber is glued into the connector in multiple locations and encased in protective furcation tubing between connectors. The connectorized fiber tip can then be polished at a standard 8° angle in lieu of angle cleaving. Care must be taken when gluing the fiber into the ferrule that the collapsed region does not extend too far past the ferrule tip; otherwise, the polishing process will remove the entire collapsed region and fill the holes of the photonic crystal with polish grit and debris. Low-stress adhesives are used to maintain good output mode quality and transmission.
  25. A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
    [CrossRef]
  26. A. E. Siegman, “How to (maybe) measure laser beam quality,” in Diode Pumped Solid State Lasers: Applications and Issues, vol. 17, M. Dowley, ed. (Optical Society of America, 1998), p. MQ1.
  27. C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett. 78, 2452–2454 (2001).
    [CrossRef]
  28. G. Violakis, N. Aggarwal, and H. G. Limberger, “Stress changes in H2-loaded SMF optical fibers induced by cw-Ar+ 244 nm irradiation,” Opt. Mater. Express 2, 1490–1495 (2012).
    [CrossRef]
  29. R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
    [CrossRef]
  30. F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, and P. St. J. Russell, “Damage-free single-mode transmission of deep-UV light in hollow-core PCF,” Opt. Express 22, 15388–15396 (2014).
    [CrossRef] [PubMed]

2014 (1)

2013 (3)

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).
[CrossRef] [PubMed]

K.-F. Klein, C. P. Gonschior, D. Beer, H.-S. Eckhardt, M. Belz, J. Shannon, V. Khalilov, M. Klein, and C. Jakob, “Silica-based UV-fibers for DUV applications: current status,” Proc. SPIE 8775, 87750B (2013).
[CrossRef]

D. L. Griscom, “A minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-IR absorption bands, with emphasis on self-trapped holes and how they can be controlled,” Phys. Res. Int. 2013, 379041 (2013).
[CrossRef]

2012 (1)

2011 (1)

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[CrossRef]

2010 (1)

C. P. Gonschior, D. Eimer, K.-F. Klein, T. Sun, and K. T. V. Grattan, “Characterization of UV single-mode and low-mode fibers,” Proc. SPIE 7559, 75590X (2010).
[CrossRef]

2009 (2)

L. Shang, I.-M. Chou, W. Lu, R. C. Burruss, and Y. Zhang, “Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523 K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions,” Geochim. Cosmochim. Acta 73, 5435–5443 (2009).
[CrossRef]

N. Yamamoto, L. Tao, and A. P. Yalin, “Single-mode delivery of 250 nm light using a large mode area photonic crystal fiber,” Opt. Express 17, 16933–16940 (2009).
[CrossRef] [PubMed]

2007 (1)

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[CrossRef]

2003 (2)

2002 (2)

H. Henschel, O. Köhn, and U. Weinand, “Radiation hardening of pure silica optical fibers by high-pressure hydrogen treatment,” IEEE Trans. Nucl. Sci. 49, 1401–1409 (2002).
[CrossRef]

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
[CrossRef]

2001 (3)

M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photon. Technol. Lett. 13, 978–980 (2001).
[CrossRef]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155–168 (2001).
[CrossRef]

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett. 78, 2452–2454 (2001).
[CrossRef]

1998 (3)

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155, 376–385 (1998).
[CrossRef]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[CrossRef]

A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii, “γ-radiation-induced absorption in pure-silica-core fibers in the visible spectral region: the effect of H2-loading,” IEEE Trans. Nucl. Sci. 45, 1576–1579 (1998).
[CrossRef]

1997 (1)

1995 (1)

N. Kuzuu, “OH content dependence of ArF-excimer-laser-induced absorption in type-III fused silica,” Proc. SPIE 2714, 71–79 (1995).
[CrossRef]

1992 (1)

P. B. Lyons and L. D. Looney, “Enhanced radiation resistance of high-OH silica optical fibers,” Proc. SPIE 1791, 286–296 (1992).
[CrossRef]

1987 (1)

H. Hanafusa, Y. Hibino, and F. Yamamoto, “Formation mechanism of drawing-induced defects in optical fibers,” J. Non-Cryst. Solids 95–96, 655–661 (1987).
[CrossRef]

1979 (1)

J. E. Shelby, “Radiation effects in hydrogen-impregnated vitreous silica,” J. Appl. Phys. 50, 3702–3706 (1979).
[CrossRef]

1976 (1)

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28, 516–518 (1976).
[CrossRef]

1967 (1)

S. P. Faile, J. J. Schmidt, and D. M. Roy, “Irradiation effects in glasses: suppression by synthesis under high-pressure hydrogen,” Science 156, 1593–1595 (1967).
[CrossRef] [PubMed]

Aggarwal, N.

Allan, D. C.

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett. 78, 2452–2454 (2001).
[CrossRef]

Beer, D.

K.-F. Klein, C. P. Gonschior, D. Beer, H.-S. Eckhardt, M. Belz, J. Shannon, V. Khalilov, M. Klein, and C. Jakob, “Silica-based UV-fibers for DUV applications: current status,” Proc. SPIE 8775, 87750B (2013).
[CrossRef]

Belz, M.

K.-F. Klein, C. P. Gonschior, D. Beer, H.-S. Eckhardt, M. Belz, J. Shannon, V. Khalilov, M. Klein, and C. Jakob, “Silica-based UV-fibers for DUV applications: current status,” Proc. SPIE 8775, 87750B (2013).
[CrossRef]

Birks, T. A.

Blakestad, R. B.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[CrossRef]

Blatt, R.

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003).
[CrossRef]

Borrelli, N. F.

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett. 78, 2452–2454 (2001).
[CrossRef]

Britton, J.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[CrossRef]

Brown, K. R.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[CrossRef]

Burruss, R. C.

L. Shang, I.-M. Chou, W. Lu, R. C. Burruss, and Y. Zhang, “Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523 K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions,” Geochim. Cosmochim. Acta 73, 5435–5443 (2009).
[CrossRef]

Chiaverini, J.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[CrossRef]

Chou, I.-M.

L. Shang, I.-M. Chou, W. Lu, R. C. Burruss, and Y. Zhang, “Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523 K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions,” Geochim. Cosmochim. Acta 73, 5435–5443 (2009).
[CrossRef]

Dianov, E. M.

A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii, “γ-radiation-induced absorption in pure-silica-core fibers in the visible spectral region: the effect of H2-loading,” IEEE Trans. Nucl. Sci. 45, 1576–1579 (1998).
[CrossRef]

Eckhardt, H.-S.

K.-F. Klein, C. P. Gonschior, D. Beer, H.-S. Eckhardt, M. Belz, J. Shannon, V. Khalilov, M. Klein, and C. Jakob, “Silica-based UV-fibers for DUV applications: current status,” Proc. SPIE 8775, 87750B (2013).
[CrossRef]

Eimer, D.

C. P. Gonschior, D. Eimer, K.-F. Klein, T. Sun, and K. T. V. Grattan, “Characterization of UV single-mode and low-mode fibers,” Proc. SPIE 7559, 75590X (2010).
[CrossRef]

Ermolov, A.

Faile, S. P.

S. P. Faile, J. J. Schmidt, and D. M. Roy, “Irradiation effects in glasses: suppression by synthesis under high-pressure hydrogen,” Science 156, 1593–1595 (1967).
[CrossRef] [PubMed]

Folkenberg, J. R.

Friebele, E. J.

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28, 516–518 (1976).
[CrossRef]

Frosz, M. H.

Gebert, F.

Golant, K. M.

A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii, “γ-radiation-induced absorption in pure-silica-core fibers in the visible spectral region: the effect of H2-loading,” IEEE Trans. Nucl. Sci. 45, 1576–1579 (1998).
[CrossRef]

Gonschior, C. P.

K.-F. Klein, C. P. Gonschior, D. Beer, H.-S. Eckhardt, M. Belz, J. Shannon, V. Khalilov, M. Klein, and C. Jakob, “Silica-based UV-fibers for DUV applications: current status,” Proc. SPIE 8775, 87750B (2013).
[CrossRef]

C. P. Gonschior, D. Eimer, K.-F. Klein, T. Sun, and K. T. V. Grattan, “Characterization of UV single-mode and low-mode fibers,” Proc. SPIE 7559, 75590X (2010).
[CrossRef]

Grattan, K. T. V.

C. P. Gonschior, D. Eimer, K.-F. Klein, T. Sun, and K. T. V. Grattan, “Characterization of UV single-mode and low-mode fibers,” Proc. SPIE 7559, 75590X (2010).
[CrossRef]

Griscom, D. L.

D. L. Griscom, “A minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-IR absorption bands, with emphasis on self-trapped holes and how they can be controlled,” Phys. Res. Int. 2013, 379041 (2013).
[CrossRef]

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28, 516–518 (1976).
[CrossRef]

Hanafusa, H.

H. Hanafusa, Y. Hibino, and F. Yamamoto, “Formation mechanism of drawing-induced defects in optical fibers,” J. Non-Cryst. Solids 95–96, 655–661 (1987).
[CrossRef]

Henschel, H.

H. Henschel, O. Köhn, and U. Weinand, “Radiation hardening of pure silica optical fibers by high-pressure hydrogen treatment,” IEEE Trans. Nucl. Sci. 49, 1401–1409 (2002).
[CrossRef]

Hibino, Y.

H. Hanafusa, Y. Hibino, and F. Yamamoto, “Formation mechanism of drawing-induced defects in optical fibers,” J. Non-Cryst. Solids 95–96, 655–661 (1987).
[CrossRef]

Hillrichs, G.

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155, 376–385 (1998).
[CrossRef]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[CrossRef]

Hirano, M.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
[CrossRef]

M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photon. Technol. Lett. 13, 978–980 (2001).
[CrossRef]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155–168 (2001).
[CrossRef]

Hosono, H.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
[CrossRef]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155–168 (2001).
[CrossRef]

M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photon. Technol. Lett. 13, 978–980 (2001).
[CrossRef]

Ikuta, Y.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
[CrossRef]

Itano, W. M.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[CrossRef]

Jakob, C.

K.-F. Klein, C. P. Gonschior, D. Beer, H.-S. Eckhardt, M. Belz, J. Shannon, V. Khalilov, M. Klein, and C. Jakob, “Silica-based UV-fibers for DUV applications: current status,” Proc. SPIE 8775, 87750B (2013).
[CrossRef]

Joly, N. Y.

Jost, J. D.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[CrossRef]

Kajihara, K.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
[CrossRef]

Karlitschek, P.

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155, 376–385 (1998).
[CrossRef]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[CrossRef]

Khalilov, V.

K.-F. Klein, C. P. Gonschior, D. Beer, H.-S. Eckhardt, M. Belz, J. Shannon, V. Khalilov, M. Klein, and C. Jakob, “Silica-based UV-fibers for DUV applications: current status,” Proc. SPIE 8775, 87750B (2013).
[CrossRef]

Kikugawa, S.

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
[CrossRef]

M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photon. Technol. Lett. 13, 978–980 (2001).
[CrossRef]

Kim, J.

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).
[CrossRef] [PubMed]

Klein, K.-F.

K.-F. Klein, C. P. Gonschior, D. Beer, H.-S. Eckhardt, M. Belz, J. Shannon, V. Khalilov, M. Klein, and C. Jakob, “Silica-based UV-fibers for DUV applications: current status,” Proc. SPIE 8775, 87750B (2013).
[CrossRef]

C. P. Gonschior, D. Eimer, K.-F. Klein, T. Sun, and K. T. V. Grattan, “Characterization of UV single-mode and low-mode fibers,” Proc. SPIE 7559, 75590X (2010).
[CrossRef]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[CrossRef]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155, 376–385 (1998).
[CrossRef]

Klein, M.

K.-F. Klein, C. P. Gonschior, D. Beer, H.-S. Eckhardt, M. Belz, J. Shannon, V. Khalilov, M. Klein, and C. Jakob, “Silica-based UV-fibers for DUV applications: current status,” Proc. SPIE 8775, 87750B (2013).
[CrossRef]

Knight, J. C.

Köhn, O.

H. Henschel, O. Köhn, and U. Weinand, “Radiation hardening of pure silica optical fibers by high-pressure hydrogen treatment,” IEEE Trans. Nucl. Sci. 49, 1401–1409 (2002).
[CrossRef]

Kuzuu, N.

N. Kuzuu, “OH content dependence of ArF-excimer-laser-induced absorption in type-III fused silica,” Proc. SPIE 2714, 71–79 (1995).
[CrossRef]

Langer, C.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[CrossRef]

Leibfried, D.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[CrossRef]

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[CrossRef]

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003).
[CrossRef]

Limberger, H. G.

Looney, L. D.

P. B. Lyons and L. D. Looney, “Enhanced radiation resistance of high-OH silica optical fibers,” Proc. SPIE 1791, 286–296 (1992).
[CrossRef]

Lu, W.

L. Shang, I.-M. Chou, W. Lu, R. C. Burruss, and Y. Zhang, “Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523 K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions,” Geochim. Cosmochim. Acta 73, 5435–5443 (2009).
[CrossRef]

Lyons, P. B.

P. B. Lyons and L. D. Looney, “Enhanced radiation resistance of high-OH silica optical fibers,” Proc. SPIE 1791, 286–296 (1992).
[CrossRef]

Mlynek, J. A.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[CrossRef]

Monroe, C.

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).
[CrossRef] [PubMed]

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003).
[CrossRef]

Mortensen, N. A.

Nielsen, M. D.

Ospelkaus, C.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[CrossRef]

Oto, M.

M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photon. Technol. Lett. 13, 978–980 (2001).
[CrossRef]

Ozeri, R.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[CrossRef]

Price, J. J.

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett. 78, 2452–2454 (2001).
[CrossRef]

Reichle, R.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[CrossRef]

Roy, D. M.

S. P. Faile, J. J. Schmidt, and D. M. Roy, “Irradiation effects in glasses: suppression by synthesis under high-pressure hydrogen,” Science 156, 1593–1595 (1967).
[CrossRef] [PubMed]

Russell, P. St. J.

Rybaltovskii, A. O.

A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii, “γ-radiation-induced absorption in pure-silica-core fibers in the visible spectral region: the effect of H2-loading,” IEEE Trans. Nucl. Sci. 45, 1576–1579 (1998).
[CrossRef]

Sarukura, N.

M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photon. Technol. Lett. 13, 978–980 (2001).
[CrossRef]

Schmidt, J. J.

S. P. Faile, J. J. Schmidt, and D. M. Roy, “Irradiation effects in glasses: suppression by synthesis under high-pressure hydrogen,” Science 156, 1593–1595 (1967).
[CrossRef] [PubMed]

Schmidt, P. O.

Seidelin, S.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[CrossRef]

Shang, L.

L. Shang, I.-M. Chou, W. Lu, R. C. Burruss, and Y. Zhang, “Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523 K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions,” Geochim. Cosmochim. Acta 73, 5435–5443 (2009).
[CrossRef]

Shannon, J.

K.-F. Klein, C. P. Gonschior, D. Beer, H.-S. Eckhardt, M. Belz, J. Shannon, V. Khalilov, M. Klein, and C. Jakob, “Silica-based UV-fibers for DUV applications: current status,” Proc. SPIE 8775, 87750B (2013).
[CrossRef]

Shelby, J. E.

J. E. Shelby, “Radiation effects in hydrogen-impregnated vitreous silica,” J. Appl. Phys. 50, 3702–3706 (1979).
[CrossRef]

Siegman, A. E.

A. E. Siegman, “How to (maybe) measure laser beam quality,” in Diode Pumped Solid State Lasers: Applications and Issues, vol. 17, M. Dowley, ed. (Optical Society of America, 1998), p. MQ1.

Sigel, G. H.

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28, 516–518 (1976).
[CrossRef]

Skuja, L.

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155–168 (2001).
[CrossRef]

Smith, C. M.

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett. 78, 2452–2454 (2001).
[CrossRef]

Sun, T.

C. P. Gonschior, D. Eimer, K.-F. Klein, T. Sun, and K. T. V. Grattan, “Characterization of UV single-mode and low-mode fibers,” Proc. SPIE 7559, 75590X (2010).
[CrossRef]

Tao, L.

Tomashuk, A. L.

A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii, “γ-radiation-induced absorption in pure-silica-core fibers in the visible spectral region: the effect of H2-loading,” IEEE Trans. Nucl. Sci. 45, 1576–1579 (1998).
[CrossRef]

VanDevender, A. P.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[CrossRef]

Violakis, G.

Wan, Y.

Weinand, U.

H. Henschel, O. Köhn, and U. Weinand, “Radiation hardening of pure silica optical fibers by high-pressure hydrogen treatment,” IEEE Trans. Nucl. Sci. 49, 1401–1409 (2002).
[CrossRef]

Weiss, T.

Wesenberg, J. H.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[CrossRef]

Wilson, A. C.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[CrossRef]

Wineland, D.

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003).
[CrossRef]

Wineland, D. J.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[CrossRef]

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[CrossRef]

Yalin, A. P.

Yamamoto, F.

H. Hanafusa, Y. Hibino, and F. Yamamoto, “Formation mechanism of drawing-induced defects in optical fibers,” J. Non-Cryst. Solids 95–96, 655–661 (1987).
[CrossRef]

Yamamoto, N.

Zhang, Y.

L. Shang, I.-M. Chou, W. Lu, R. C. Burruss, and Y. Zhang, “Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523 K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions,” Geochim. Cosmochim. Acta 73, 5435–5443 (2009).
[CrossRef]

Appl. Phys. B (1)

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, “Excimer laser-induced expansion in hydrogen-loaded silica,” Appl. Phys. Lett. 78, 2452–2454 (2001).
[CrossRef]

E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawing-induced defect centers in a fused silica core fiber,” Appl. Phys. Lett. 28, 516–518 (1976).
[CrossRef]

Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett. 80, 3916–3918 (2002).
[CrossRef]

Geochim. Cosmochim. Acta (1)

L. Shang, I.-M. Chou, W. Lu, R. C. Burruss, and Y. Zhang, “Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523 K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions,” Geochim. Cosmochim. Acta 73, 5435–5443 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photon. Technol. Lett. 13, 978–980 (2001).
[CrossRef]

IEEE Trans. Nucl. Sci. (2)

A. L. Tomashuk, E. M. Dianov, K. M. Golant, and A. O. Rybaltovskii, “γ-radiation-induced absorption in pure-silica-core fibers in the visible spectral region: the effect of H2-loading,” IEEE Trans. Nucl. Sci. 45, 1576–1579 (1998).
[CrossRef]

H. Henschel, O. Köhn, and U. Weinand, “Radiation hardening of pure silica optical fibers by high-pressure hydrogen treatment,” IEEE Trans. Nucl. Sci. 49, 1401–1409 (2002).
[CrossRef]

J. Appl. Phys. (1)

J. E. Shelby, “Radiation effects in hydrogen-impregnated vitreous silica,” J. Appl. Phys. 50, 3702–3706 (1979).
[CrossRef]

J. Non-Cryst. Solids (1)

H. Hanafusa, Y. Hibino, and F. Yamamoto, “Formation mechanism of drawing-induced defects in optical fibers,” J. Non-Cryst. Solids 95–96, 655–661 (1987).
[CrossRef]

Opt. Commun. (2)

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155, 376–385 (1998).
[CrossRef]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Res. Int. (1)

D. L. Griscom, “A minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-IR absorption bands, with emphasis on self-trapped holes and how they can be controlled,” Phys. Res. Int. 2013, 379041 (2013).
[CrossRef]

Phys. Rev. A (1)

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[CrossRef]

Proc. SPIE (5)

P. B. Lyons and L. D. Looney, “Enhanced radiation resistance of high-OH silica optical fibers,” Proc. SPIE 1791, 286–296 (1992).
[CrossRef]

C. P. Gonschior, D. Eimer, K.-F. Klein, T. Sun, and K. T. V. Grattan, “Characterization of UV single-mode and low-mode fibers,” Proc. SPIE 7559, 75590X (2010).
[CrossRef]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE 4347, 155–168 (2001).
[CrossRef]

K.-F. Klein, C. P. Gonschior, D. Beer, H.-S. Eckhardt, M. Belz, J. Shannon, V. Khalilov, M. Klein, and C. Jakob, “Silica-based UV-fibers for DUV applications: current status,” Proc. SPIE 8775, 87750B (2013).
[CrossRef]

N. Kuzuu, “OH content dependence of ArF-excimer-laser-induced absorption in type-III fused silica,” Proc. SPIE 2714, 71–79 (1995).
[CrossRef]

Rev. Mod. Phys. (1)

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003).
[CrossRef]

Science (2)

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).
[CrossRef] [PubMed]

S. P. Faile, J. J. Schmidt, and D. M. Roy, “Irradiation effects in glasses: suppression by synthesis under high-pressure hydrogen,” Science 156, 1593–1595 (1967).
[CrossRef] [PubMed]

Other (3)

Commercial equipment, instruments, and materials are identified in this paper in order to specify the experimental procedure accurately. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

A. E. Siegman, “How to (maybe) measure laser beam quality,” in Diode Pumped Solid State Lasers: Applications and Issues, vol. 17, M. Dowley, ed. (Optical Society of America, 1998), p. MQ1.

This connectorization method is suitable for our tests, but is not sufficiently robust for fibers intended for general laboratory use. To make patch cables for long-term experimental use, the fiber is glued into the connector in multiple locations and encased in protective furcation tubing between connectors. The connectorized fiber tip can then be polished at a standard 8° angle in lieu of angle cleaving. Care must be taken when gluing the fiber into the ferrule that the collapsed region does not extend too far past the ferrule tip; otherwise, the polishing process will remove the entire collapsed region and fill the holes of the photonic crystal with polish grit and debris. Low-stress adhesives are used to maintain good output mode quality and transmission.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Solid-core photonic-crystal fibers. Panel (a) shows an optical micrograph of the cleaved facet of an uncollapsed LMA-8-UV fiber. The pattern of holes which forms the photonic crystal can be seen in the center. The guided mode propagates through the solid core in the center of the array of holes. The cross-section of LMA-10-UV fiber looks qualitatively the same. Panel (b) shows a side view of a fiber where the photonic crystal has been collapsed over a 600 μm section in the center using a fusion splicer. The collapsed region appears bright, with the dark photonic crystal holes visible on either side. In (c), a fiber is shown after angle cleaving in a collapsed section.

Fig. 2
Fig. 2

Far-field output-mode spatial intensity distribution at 313 nm. Panel (a) shows a typical output beam shape for a collapsed, cured fiber (here, an LMA-10-UV fiber). Panel (b) shows the same beam with increased detector gain. The central peak has saturated the detector, and weak hexagonally-arranged sidelobes are visible around the main peak.

Fig. 3
Fig. 3

Cutback measurements of cured fibers. The four panels show cutback data for LMA-8-UV at 280 nm (a) and 313 nm (b), as well as for LMA-10-UV at 280 nm (c) and 313 nm (d). Error bars are dominated by uncertainties from the power sensors. The dotted lines are fits to a decaying exponential, yielding attenuations per unit length of 0.9 ± 0.2 dB/m (a), 0.5 ± 0.1 dB/m (b), 0.4 ± 0.2 dB/m (c), and 0.13 ± 0.04 dB/m (d). Extrapolation of the fits to zero length gives typical estimated in-coupling efficiencies around 0.7.

Fig. 4
Fig. 4

Bending loss. Transmission loss at 313 nm due to the inclusion of a single loop of constant radius in LMA-8-UV (red circles) and LMA-10-UV (blue diamonds) fibers. Dashed lines indicating 0 dB loss and 50 mm loop radius are shown as guides to the eye. Both fibers show a revival of transmission near 38 mm loop radius. The transmitted mode is observed to be the lowest-order mode at all radii.

Fig. 5
Fig. 5

Transmission linearity. Output power is plotted versus input power for ∼ 1 m lengths of LMA-8-UV (red circles) and LMA-10-UV (blue diamonds) fibers. Both fibers were cured at ∼ 100 mW output power. Dashed lines are linear fits through the origin, corresponding to fractional transmission of 0.64 and 0.71, respectively (including all coupling losses). Measurements were made at 313 nm.

Fig. 6
Fig. 6

Long-term transmission with high-power 313 nm light. Transmission is plotted for three different hydrogen-loaded fibers: LMA-8-UV fiber exposed to ∼ 100 mW output power continuously (red solid circles), LMA-10-UV fiber cured for 40 hours at ∼ 100 mW output power and then exposed to ∼ 60 mW output power (green solid diamonds), and LMA-10-UV fiber cured for 40 hours at ∼ 100 mW output power and then exposed to ∼ 125 mW output power (blue solid diamonds). Transmission is also plotted for two non-hydrogen-loaded fibers exposed with an initial output power of ∼ 100 mW: LMA-8-UV (red open circles) and LMA-10-UV (blue open diamonds). The time axis is referenced to the start of the exposure, including curing. Data for the first 160 hours of the highest power LMA-10-UV (blue solid diamonds) are not shown. Drifts in the transmission are due to drifts in the input coupling. Sudden upward jumps in the measured transmission are due to re-optimization of the fiber in-coupling. The arrow at far right indicates where the input coupling for the last fiber (blue solid diamonds) was re-optimized shortly before the end of the test.

Metrics