Abstract

Manipulating the circular polarization of light is of great importance in chemistry and biology, as chiral molecules exhibit different physiological properties when exposed to different circularly polarized waves. Here we suggest a graphene/dielectric-stacked structure, which has both the properties of an epsilon-near-zero material and the high Hall conductivity of graphene. The proposed sub-wavelength structure demonstrates efficient manipulation of circular polarization properties of light. In a quite broad frequency range and at a large oblique incidence angle, the present magnetically active structure is transparent for one circularly polarized wave, and opaque for another. Such an effect can be further tuned by changing the magnitude of the applied magnetic field and chemical potential of graphene.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable graphene-coated spiral dielectric lens as a circular polarization analyzer

Bofeng Zhu, Guobin Ren, Martin J. Cryan, Chenglong Wan, Yixiao Gao, Yang Yang, and Shuisheng Jian
Opt. Express 23(7) 8348-8356 (2015)

Optical isolation with epsilon-near-zero metamaterials

Arthur R. Davoyan, Ahmed M. Mahmoud, and Nader Engheta
Opt. Express 21(3) 3279-3286 (2013)

High-efficiency tunable circular asymmetric transmission using dielectric metasurface integrated with graphene sheet

Huan Jiang, Wenyu Zhao, and Yongyuan Jiang
Opt. Express 25(17) 19732-19739 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
    [Crossref] [PubMed]
  2. P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
    [Crossref] [PubMed]
  3. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
    [Crossref] [PubMed]
  4. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  5. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  6. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [Crossref]
  7. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref] [PubMed]
  8. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  9. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  10. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  11. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  12. F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
    [Crossref] [PubMed]
  13. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  14. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  15. S. He, X. Z. Zhang, and Y. R. He, “Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI,” Opt. Express 21(25), 30664–30673 (2013).
    [Crossref] [PubMed]
  16. S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
    [Crossref]
  17. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
    [Crossref]
  18. D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett. 98(2), 021911 (2011).
    [Crossref]
  19. M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
    [Crossref] [PubMed]
  20. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
    [Crossref] [PubMed]
  21. A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [Crossref]
  22. S. M. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
    [Crossref]
  23. A. R. Davoyan, A. M. Mahmoud, and N. Engheta, “Optical isolation with epsilon-near-zero metamaterials,” Opt. Express 21(3), 3279–3286 (2013).
    [Crossref] [PubMed]
  24. A. R. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111(25), 257401 (2013).
    [Crossref] [PubMed]
  25. R. Kubo, “Statistical-mechanical theory of irreversible processes. i.general theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn. 12(6), 570–586 (1957).
    [Crossref]
  26. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New J. Phys. 11(9), 095013 (2009).
    [Crossref]
  27. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
    [Crossref]
  28. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
    [Crossref] [PubMed]
  29. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
    [Crossref] [PubMed]
  30. H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
    [Crossref]
  31. M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, “Approaching the dirac point in high-mobility multilayer epitaxial graphene,” Phys. Rev. Lett. 101(26), 267601 (2008).
    [Crossref] [PubMed]
  32. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
    [Crossref] [PubMed]

2014 (1)

S. M. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

2013 (5)

A. R. Davoyan, A. M. Mahmoud, and N. Engheta, “Optical isolation with epsilon-near-zero metamaterials,” Opt. Express 21(3), 3279–3286 (2013).
[Crossref] [PubMed]

A. R. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111(25), 257401 (2013).
[Crossref] [PubMed]

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

S. He, X. Z. Zhang, and Y. R. He, “Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI,” Opt. Express 21(25), 30664–30673 (2013).
[Crossref] [PubMed]

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

2012 (4)

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

2011 (7)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett. 98(2), 021911 (2011).
[Crossref]

2010 (2)

F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref] [PubMed]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

2009 (4)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New J. Phys. 11(9), 095013 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

2008 (3)

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, “Approaching the dirac point in high-mobility multilayer epitaxial graphene,” Phys. Rev. Lett. 101(26), 267601 (2008).
[Crossref] [PubMed]

2007 (2)

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2006 (1)

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

2003 (1)

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

2002 (1)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

1957 (1)

R. Kubo, “Statistical-mechanical theory of irreversible processes. i.general theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn. 12(6), 570–586 (1957).
[Crossref]

Alaee, R.

Alu, A.

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Avouris, P.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Bagnall, D. M.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Barra, A. L.

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, “Approaching the dirac point in high-mobility multilayer epitaxial graphene,” Phys. Rev. Lett. 101(26), 267601 (2008).
[Crossref] [PubMed]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Berger, C.

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, “Approaching the dirac point in high-mobility multilayer epitaxial graphene,” Phys. Rev. Lett. 101(26), 267601 (2008).
[Crossref] [PubMed]

Biagioni, P.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Bolotin, K. I.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Bostwick, A.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Caloz, C.

D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett. 98(2), 021911 (2011).
[Crossref]

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New J. Phys. 11(9), 095013 (2009).
[Crossref]

Castro Neto, A. H.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Chen, T.

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Crassee, I.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Davoyan, A. R.

A. R. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111(25), 257401 (2013).
[Crossref] [PubMed]

A. R. Davoyan, A. M. Mahmoud, and N. Engheta, “Optical isolation with epsilon-near-zero metamaterials,” Opt. Express 21(3), 3279–3286 (2013).
[Crossref] [PubMed]

de Abajo, F. J. G.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

de Heer, W. A.

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, “Approaching the dirac point in high-mobility multilayer epitaxial graphene,” Phys. Rev. Lett. 101(26), 267601 (2008).
[Crossref] [PubMed]

Dean, C. R.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Duò, L.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Elias, D. C.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Engheta, N.

A. R. Davoyan, A. M. Mahmoud, and N. Engheta, “Optical isolation with epsilon-near-zero metamaterials,” Opt. Express 21(3), 3279–3286 (2013).
[Crossref] [PubMed]

A. R. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111(25), 257401 (2013).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Farhat, M.

Farmer, D. B.

F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref] [PubMed]

Faugeras, C.

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, “Approaching the dirac point in high-mobility multilayer epitaxial graphene,” Phys. Rev. Lett. 101(26), 267601 (2008).
[Crossref] [PubMed]

Finazzi, M.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Freitag, M.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Fudenberg, G.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

García de Abajo, F. J.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Geim, A. K.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Giessen, H.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Guinea, F.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New J. Phys. 11(9), 095013 (2009).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

He, S.

S. M. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

S. He, X. Z. Zhang, and Y. R. He, “Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI,” Opt. Express 21(25), 30664–30673 (2013).
[Crossref] [PubMed]

He, Y. R.

Hecht, B.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Hentschel, M.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

Hone, J.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Huang, J. S.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Jaszczak, J. A.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Jiang, Z.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Katsnelson, M. I.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Kim, P.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Klima, M.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Koppens, F. H.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Koppens, F. H. L.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Kubo, R.

R. Kubo, “Statistical-mechanical theory of irreversible processes. i.general theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn. 12(6), 570–586 (1957).
[Crossref]

Kuzmenko, A. B.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Lederer, F.

Lee, C.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Levallois, J.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Li, X. S.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Liang, X. G.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lin, Y. M.

F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref] [PubMed]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, N.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Low, T.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Ma, Y.

S. M. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Mahmoud, A. M.

Manjavacas, A.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Martinez, G.

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, “Approaching the dirac point in high-mobility multilayer epitaxial graphene,” Phys. Rev. Lett. 101(26), 267601 (2008).
[Crossref] [PubMed]

Maude, D. K.

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, “Approaching the dirac point in high-mobility multilayer epitaxial graphene,” Phys. Rev. Lett. 101(26), 267601 (2008).
[Crossref] [PubMed]

Meric, I.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Morozov, S. V.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Neugebauer, P.

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, “Approaching the dirac point in high-mobility multilayer epitaxial graphene,” Phys. Rev. Lett. 101(26), 267601 (2008).
[Crossref] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Orlita, M.

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, “Approaching the dirac point in high-mobility multilayer epitaxial graphene,” Phys. Rev. Lett. 101(26), 267601 (2008).
[Crossref] [PubMed]

Ostler, M.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Papakostas, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Peres, N. M. R.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Plochocka, P.

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, “Approaching the dirac point in high-mobility multilayer epitaxial graphene,” Phys. Rev. Lett. 101(26), 267601 (2008).
[Crossref] [PubMed]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Potemski, M.

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, “Approaching the dirac point in high-mobility multilayer epitaxial graphene,” Phys. Rev. Lett. 101(26), 267601 (2008).
[Crossref] [PubMed]

Potts, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Prosvirnin, S. L.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rockstuhl, C.

Rotenberg, E.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Salandrino, A.

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Schäferling, M.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

Schedin, F.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Seyller, T.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New J. Phys. 11(9), 095013 (2009).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shepard, K. L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Sikes, K. J.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Silveirinha, M. G.

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Sorgenfrei, S.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Sounas, D. L.

D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett. 98(2), 021911 (2011).
[Crossref]

Sprinkle, M.

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, “Approaching the dirac point in high-mobility multilayer epitaxial graphene,” Phys. Rev. Lett. 101(26), 267601 (2008).
[Crossref] [PubMed]

Stormer, H. L.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Taniguchi, T.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Thongrattanasiri, S.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

van der Marel, D.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Vincent, P. A.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Walter, A. L.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Watanabe, K.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Weiss, T.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

Wu, Y. Q.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Xia, F. N.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref] [PubMed]

Yan, H. G.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Young, A. F.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, X. Z.

Zheludev, N. I.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

Zhong, S. M.

S. M. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Zhu, W. J.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

ACS Nano (1)

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

S. M. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett. 98(2), 021911 (2011).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

J. Phys. Soc. Jpn. (1)

R. Kubo, “Statistical-mechanical theory of irreversible processes. i.general theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn. 12(6), 570–586 (1957).
[Crossref]

Nano Lett. (3)

F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Nat. Photonics (3)

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Nat. Phys. (1)

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

New J. Phys. (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New J. Phys. 11(9), 095013 (2009).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Phys. Rev. Lett. (7)

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, “Approaching the dirac point in high-mobility multilayer epitaxial graphene,” Phys. Rev. Lett. 101(26), 267601 (2008).
[Crossref] [PubMed]

A. R. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111(25), 257401 (2013).
[Crossref] [PubMed]

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Science (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Solid State Commun. (1)

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic view of the graphene/dielectric-stacked structure for circular polarization control in reflection and transmission. A static magnetic field B is applied perpendicularly to the surface. (b) Illustration of our suggested structure.
Fig. 2
Fig. 2 (a) and (b) The dependence of the frequency of ENZ with respect to both magnetic field B and chemical potential µc. (c) and (d) The real part of the off-diagonal element g as a function of magnetic field B and the chemical potential µc. In (a)-(d), the points a1-a4 correspond to the situations where the value of µc is fixed to 0.2 eV and increase the magnitude of magnetic field from 1 T to 7 T with a step of 2 T. The points b1-b4 correspond to the situations where the magnitude of B is fixed to 3 T and the chemical potential µc increases from 0.15 eV to 0.3 eV with a step of 0.05 eV. (e) and (f) Transmittance of the forward RCP and LCP waves through ENZ graphene/dielectric-stack slab as a function of the slab thickness. The lines correspond to the points ai(i = 1,2,3,4) in (a) and (b) with different applied magnetic fields. (g) and (h) Transmittance of the forward RCP and LCP waves as a function of the slab thickness, with a different chemical potential (corresponding to points bi, i = 1,2,3,4). Panels to the left correspond to τ = 2 ps while right panels are for τ = 0.2 ps. The dielectric thickness td is 50 nm and the environmental temperature is 300 K.
Fig. 3
Fig. 3 (a) The dependence of the frequency of ENZ with respect to both magnetic field B and chemical potential µc. (b) The real part of the off-diagonal element g as a function of magnetic field B and the chemical potential µc. (c) The transmission and reflection spectrum for a forward propagating RCP wave with different applied magnetic fields. (d) The transmission and reflection spectrum for a forward propagating LCP wave with different applied magnetic fields. (e) The efficiency of the polarizer is characterized by the parameter Pt, which is defined as the multiplication of the degree of polarization and the strength of the transmission of RCP component. (f) The FWHM of the lines in (e) with a dependence on magnetic field B at different levels of chemical potential, which represent the possible bandwidth of the effective operating frequency of the graphene-based polarizer. From (c) to (f), parameters of the structure are the following: the relaxation time 2 ps, the chemical potential 0.2 eV, the thickness of each dielectric layer 300 nm and the slab 15 μm .
Fig. 4
Fig. 4 The transmission and reflection of both the RCP and LCP waves with the oblique incidence of the RCP wave (a) and LCP wave (b). Trr is the conversion coefficient from the incident RCP wave to the transmitted RCP wave. Tij and Rij are the conversion coefficients of the circularly polarized waves, e.g., Trr is the conversion coefficient from the incident RCP wave to the transmitted RCP wave, and Rlr is the conversion coefficient from incident RCP wave to reflected LCP wave.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ξ ¯ ¯ g =( ξ gd ξ god 0 ξ god ξ gd 0 0 0 ξ z )
σ xx (ω,B)= e 2 v f 2 | eB |(ω+i2Γ) iπ n=0 { 1 M n+1 M n ×[ f d ( M n ) f d ( M n+1 )+ f d ( M n+1 ) f d ( M n )] × 1 ( M n+1 M n ) 2 2 (ω+i2Γ) 2 +( M n M n )}
σ yx (ω,B)= e 2 v f 2 eB π n=0 [ f d ( M n ) f d ( M n+1 ) f d ( M n+1 )+ f d ( M n )] ×[ 1 ( M n+1 M n ) 2 2 (ω+i2Γ) 2 +( M n M n )]
σ xx = σ 0 1iωτ ( ω c τ) 2 + (1iωτ) 2
σ yx = σ 0 ω c τ ( ω c τ) 2 + (1iωτ) 2
σ 0 = 2 e 2 τ π 2 k B Tln(2cosh μ c 2 k B T )
ω c = M n+1 M n L 2 2 μ c = eB v f 2 μ c
ξ ¯ ¯ ave =( ξ p ig 0 ig ξ p 0 0 0 ξ t )
E=(A v RH +B v LH )exp(i[γx+βziω])
E=( κ 1 v 1 exp(i β + z)+ κ 2 v 2 exp(i β + z)+ κ 3 v 3 exp(i β z)+ κ 4 v 4 exp(i β z))exp(i[γxiω])
β ± 2 = γ 2 ( ξ t ξ p )± 4 ξ t g 2 k 0 2 ( ξ t k 0 2 γ 2 )+ γ 4 ( ξ p ξ t ) 2 ξ t + ξ p k 0 2 γ 2
v i =( 1 ig k 0 2 β i 2 + γ 2 ξ p k 0 2 β i γ γ 2 ξ t k 0 2 )

Metrics