Abstract

We report on the improvement of the infrared optical trapping efficiency of dielectric microspheres by the controlled adhesion of gold nanorods to their surface. When trapping wavelength was equal to the surface plasmon resonance wavelength of the gold nanorods (808 nm), a 7 times improvement in the optical force acting on the microspheres was obtained. Such a gold nanorod assisted enhancement of the optical trapping efficiency enabled the intracellular manipulation of the decorated dielectric microsphere by using a low power (22 mW) infrared optical trap.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu and J. Hu, “Ultrasonic trapping of small particles by a vibrating rod,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(4), 798–805 (2008).
    [CrossRef] [PubMed]
  2. M. Q. Li, “Scanning probe microscopy (STM/AFM) and applications in biology,” Applied Physics a Materials Science and Processing. 68(2), 255–258 (1999).
    [CrossRef]
  3. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
    [CrossRef] [PubMed]
  4. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
    [CrossRef] [PubMed]
  5. D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
    [CrossRef] [PubMed]
  6. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
    [CrossRef] [PubMed]
  7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  8. A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science 235(4795), 1517–1520 (1987).
    [CrossRef] [PubMed]
  9. W. H. Wright, G. J. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26(12), 2148–2157 (1990).
    [CrossRef]
  10. L. Sacconi, I. M. Tolić-Nørrelykke, C. Stringari, R. Antolini, and F. S. Pavone, “Optical micromanipulations inside yeast cells,” Appl. Opt. 44(11), 2001–2007 (2005).
    [CrossRef] [PubMed]
  11. P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
    [CrossRef] [PubMed]
  12. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
    [CrossRef] [PubMed]
  13. G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: Wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
    [CrossRef] [PubMed]
  14. H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
    [CrossRef] [PubMed]
  15. Z. P. Cai and H. Y. Xu, “Point temperature sensor based on green upconversion emission in an Er: ZBLALiP microsphere,” Sens. Actuators A Phys. 108(1-3), 187–192 (2003).
    [CrossRef]
  16. C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
    [CrossRef]
  17. I. Tsagkatakis, S. Peper, and E. Bakker, “Spatial and spectral imaging of single micrometer-sized solvent cast fluorescent plasticized poly(vinyl chloride) sensing particles,” Anal. Chem. 73(2), 315–320 (2001).
    [CrossRef] [PubMed]
  18. S. Peper, I. Tsagkatakis, and E. Bakker, “Cross-linked dodecyl acrylate microspheres: novel matrices for plasticizer-free optical ion sensing,” Anal. Chim. Acta 442(1), 25–33 (2001).
    [CrossRef]
  19. A. Salinas-Castillo, M. Camprubí-Robles, and R. Mallavia, “Synthesis of a new fluorescent conjugated polymer microsphere for chemical sensing in aqueous media,” Chem. Commun. (Camb.) 46(8), 1263–1265 (2010).
    [CrossRef] [PubMed]
  20. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  21. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” Ieee J Sel Top Quant 6(6), 841–856 (2000).
    [CrossRef]
  22. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
    [CrossRef] [PubMed]
  23. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33(9), 1735–1748 (1994).
    [CrossRef] [PubMed]
  24. A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, D. S. Kaputa, A. N. Cartwright, and P. N. Prasad, “Measurement of optical trapping forces by use of the two-photon-excited fluorescence of microspheres,” Opt. Lett. 28(23), 2288–2290 (2003).
    [CrossRef] [PubMed]
  25. C. Ying-chun and W. Chien-ming, “To study the effect of paclitaxel on the cytoplasmic viscosity of murine macrophage immune cell RAW 264.7 using self-developed optical tweezers system,” Jpn. J. Appl. Phys. 51(12R), 127001 (2012).
    [CrossRef]
  26. A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
    [CrossRef] [PubMed]
  27. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [CrossRef]
  28. P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian Fluctuations and Heating of an Optically Aligned Gold Nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
    [CrossRef] [PubMed]
  29. K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15(19), 12017–12029 (2007).
    [CrossRef] [PubMed]
  30. B. Hester, G. K. Campbell, C. López-Mariscal, C. L. Filgueira, R. Huschka, N. J. Halas, and K. Helmerson, “Tunable optical tweezers for wavelength-dependent measurements,” Rev. Sci. Instrum. 83(4), 043114 (2012).
    [CrossRef] [PubMed]
  31. Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31(16), 2429–2431 (2006).
    [CrossRef] [PubMed]
  32. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [CrossRef] [PubMed]
  33. J. Burgin, S. Si, M.-H. Delville, and J.-P. Delville, “Enhancing optofluidic actuation of micro-objects by tagging with plasmonic nanoparticles,” Opt. Express 22(9), 10139–10150 (2014).
    [CrossRef] [PubMed]
  34. S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, and A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
    [CrossRef]
  35. I. Pastoriza-Santos, D. Gomez, J. Perez-Juste, L. M. Liz-Marzan, and P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
    [CrossRef]
  36. A. S. Zelenina, R. Quidant, G. Badenes, and M. Nieto-Vesperinas, “Tunable optical sorting and manipulation of nanoparticles via plasmon excitation,” Opt. Lett. 31(13), 2054–2056 (2006).
    [CrossRef] [PubMed]
  37. J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
    [CrossRef]
  38. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
    [CrossRef]
  39. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
    [CrossRef] [PubMed]
  40. L. M. Maestro, P. Haro-Gonzalez, J. G. Coello, and D. Jaque, “Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100(20), 201110 (2012).
    [CrossRef]
  41. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays,” J. Immunol. Methods 65(1-2), 55–63 (1983).
    [CrossRef] [PubMed]
  42. A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann, and F. Jäckel, “Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives,” Nanoscale 6(9), 4458–4474 (2014).
    [CrossRef] [PubMed]
  43. M. Gu, H. C. Bao, X. S. Gan, N. Stokes, and J. Z. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light-Science & Applications 3(1), e126 (2014).
    [CrossRef]
  44. S. Tehranian, F. Giovane, J. Blum, Y. L. Xu, and B. A. S. Gustafson, “Photophoresis of micrometer-sized particles in the free-molecular regime,” Int. J. Heat Mass Transfer 44(9), 1649–1657 (2001).
    [CrossRef]

2014 (3)

A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann, and F. Jäckel, “Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives,” Nanoscale 6(9), 4458–4474 (2014).
[CrossRef] [PubMed]

M. Gu, H. C. Bao, X. S. Gan, N. Stokes, and J. Z. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light-Science & Applications 3(1), e126 (2014).
[CrossRef]

J. Burgin, S. Si, M.-H. Delville, and J.-P. Delville, “Enhancing optofluidic actuation of micro-objects by tagging with plasmonic nanoparticles,” Opt. Express 22(9), 10139–10150 (2014).
[CrossRef] [PubMed]

2013 (2)

S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, and A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
[CrossRef]

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

2012 (3)

C. Ying-chun and W. Chien-ming, “To study the effect of paclitaxel on the cytoplasmic viscosity of murine macrophage immune cell RAW 264.7 using self-developed optical tweezers system,” Jpn. J. Appl. Phys. 51(12R), 127001 (2012).
[CrossRef]

B. Hester, G. K. Campbell, C. López-Mariscal, C. L. Filgueira, R. Huschka, N. J. Halas, and K. Helmerson, “Tunable optical tweezers for wavelength-dependent measurements,” Rev. Sci. Instrum. 83(4), 043114 (2012).
[CrossRef] [PubMed]

L. M. Maestro, P. Haro-Gonzalez, J. G. Coello, and D. Jaque, “Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100(20), 201110 (2012).
[CrossRef]

2011 (1)

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian Fluctuations and Heating of an Optically Aligned Gold Nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

2010 (2)

A. Salinas-Castillo, M. Camprubí-Robles, and R. Mallavia, “Synthesis of a new fluorescent conjugated polymer microsphere for chemical sensing in aqueous media,” Chem. Commun. (Camb.) 46(8), 1263–1265 (2010).
[CrossRef] [PubMed]

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[CrossRef] [PubMed]

2009 (1)

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

2008 (5)

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[CrossRef] [PubMed]

Y. Liu and J. Hu, “Ultrasonic trapping of small particles by a vibrating rod,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(4), 798–805 (2008).
[CrossRef] [PubMed]

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (2)

2005 (2)

L. Sacconi, I. M. Tolić-Nørrelykke, C. Stringari, R. Antolini, and F. S. Pavone, “Optical micromanipulations inside yeast cells,” Appl. Opt. 44(11), 2001–2007 (2005).
[CrossRef] [PubMed]

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

2004 (2)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

I. Pastoriza-Santos, D. Gomez, J. Perez-Juste, L. M. Liz-Marzan, and P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
[CrossRef]

2003 (2)

2002 (1)

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: Wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[CrossRef] [PubMed]

2001 (3)

I. Tsagkatakis, S. Peper, and E. Bakker, “Spatial and spectral imaging of single micrometer-sized solvent cast fluorescent plasticized poly(vinyl chloride) sensing particles,” Anal. Chem. 73(2), 315–320 (2001).
[CrossRef] [PubMed]

S. Peper, I. Tsagkatakis, and E. Bakker, “Cross-linked dodecyl acrylate microspheres: novel matrices for plasticizer-free optical ion sensing,” Anal. Chim. Acta 442(1), 25–33 (2001).
[CrossRef]

S. Tehranian, F. Giovane, J. Blum, Y. L. Xu, and B. A. S. Gustafson, “Photophoresis of micrometer-sized particles in the free-molecular regime,” Int. J. Heat Mass Transfer 44(9), 1649–1657 (2001).
[CrossRef]

2000 (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” Ieee J Sel Top Quant 6(6), 841–856 (2000).
[CrossRef]

1999 (3)

M. Q. Li, “Scanning probe microscopy (STM/AFM) and applications in biology,” Applied Physics a Materials Science and Processing. 68(2), 255–258 (1999).
[CrossRef]

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

1997 (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

1996 (1)

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

1994 (2)

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

1990 (1)

W. H. Wright, G. J. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26(12), 2148–2157 (1990).
[CrossRef]

1987 (2)

A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

1986 (1)

1983 (1)

T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays,” J. Immunol. Methods 65(1-2), 55–63 (1983).
[CrossRef] [PubMed]

Antolini, R.

Ashkin, A.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” Ieee J Sel Top Quant 6(6), 841–856 (2000).
[CrossRef]

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

Axner, O.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: Wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[CrossRef] [PubMed]

Badenes, G.

Bakker, E.

S. Peper, I. Tsagkatakis, and E. Bakker, “Cross-linked dodecyl acrylate microspheres: novel matrices for plasticizer-free optical ion sensing,” Anal. Chim. Acta 442(1), 25–33 (2001).
[CrossRef]

I. Tsagkatakis, S. Peper, and E. Bakker, “Spatial and spectral imaging of single micrometer-sized solvent cast fluorescent plasticized poly(vinyl chloride) sensing particles,” Anal. Chem. 73(2), 315–320 (2001).
[CrossRef] [PubMed]

Bao, H. C.

M. Gu, H. C. Bao, X. S. Gan, N. Stokes, and J. Z. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light-Science & Applications 3(1), e126 (2014).
[CrossRef]

Bergman, K.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Berns, M. W.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33(9), 1735–1748 (1994).
[CrossRef] [PubMed]

W. H. Wright, G. J. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26(12), 2148–2157 (1990).
[CrossRef]

Bettinelli, M.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[CrossRef] [PubMed]

Blum, J.

S. Tehranian, F. Giovane, J. Blum, Y. L. Xu, and B. A. S. Gustafson, “Photophoresis of micrometer-sized particles in the free-molecular regime,” Int. J. Heat Mass Transfer 44(9), 1649–1657 (2001).
[CrossRef]

Burgin, J.

Cai, Z. P.

Z. P. Cai and H. Y. Xu, “Point temperature sensor based on green upconversion emission in an Er: ZBLALiP microsphere,” Sens. Actuators A Phys. 108(1-3), 187–192 (2003).
[CrossRef]

Campbell, G. K.

B. Hester, G. K. Campbell, C. López-Mariscal, C. L. Filgueira, R. Huschka, N. J. Halas, and K. Helmerson, “Tunable optical tweezers for wavelength-dependent measurements,” Rev. Sci. Instrum. 83(4), 043114 (2012).
[CrossRef] [PubMed]

Camprubí-Robles, M.

A. Salinas-Castillo, M. Camprubí-Robles, and R. Mallavia, “Synthesis of a new fluorescent conjugated polymer microsphere for chemical sensing in aqueous media,” Chem. Commun. (Camb.) 46(8), 1263–1265 (2010).
[CrossRef] [PubMed]

Carpenter, A. E.

Carretero-Palacios, S.

A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann, and F. Jäckel, “Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives,” Nanoscale 6(9), 4458–4474 (2014).
[CrossRef] [PubMed]

Cartwright, A. N.

Chadd, E. H.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Chien-ming, W.

C. Ying-chun and W. Chien-ming, “To study the effect of paclitaxel on the cytoplasmic viscosity of murine macrophage immune cell RAW 264.7 using self-developed optical tweezers system,” Jpn. J. Appl. Phys. 51(12R), 127001 (2012).
[CrossRef]

Chooi, J. Y.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Choudhury, D.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Chu, S.

Coello, J. G.

L. M. Maestro, P. Haro-Gonzalez, J. G. Coello, and D. Jaque, “Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100(20), 201110 (2012).
[CrossRef]

del Rosal, B.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Delville, J.-P.

Delville, M.-H.

Dholakia, K.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[CrossRef] [PubMed]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[CrossRef] [PubMed]

Dong, C.-H.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

Fällman, E.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: Wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[CrossRef] [PubMed]

Feldmann, J.

A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann, and F. Jäckel, “Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives,” Nanoscale 6(9), 4458–4474 (2014).
[CrossRef] [PubMed]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Filgueira, C. L.

B. Hester, G. K. Campbell, C. López-Mariscal, C. L. Filgueira, R. Huschka, N. J. Halas, and K. Helmerson, “Tunable optical tweezers for wavelength-dependent measurements,” Rev. Sci. Instrum. 83(4), 043114 (2012).
[CrossRef] [PubMed]

Gaddam, V. R.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Gan, X. S.

M. Gu, H. C. Bao, X. S. Gan, N. Stokes, and J. Z. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light-Science & Applications 3(1), e126 (2014).
[CrossRef]

Giovane, F.

S. Tehranian, F. Giovane, J. Blum, Y. L. Xu, and B. A. S. Gustafson, “Photophoresis of micrometer-sized particles in the free-molecular regime,” Int. J. Heat Mass Transfer 44(9), 1649–1657 (2001).
[CrossRef]

Gomez, D.

I. Pastoriza-Santos, D. Gomez, J. Perez-Juste, L. M. Liz-Marzan, and P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
[CrossRef]

Gu, M.

M. Gu, H. C. Bao, X. S. Gan, N. Stokes, and J. Z. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light-Science & Applications 3(1), e126 (2014).
[CrossRef]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[CrossRef] [PubMed]

Guffey, M. J.

Gunn-Moore, F.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[CrossRef] [PubMed]

Guo, G.-C.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Gustafson, B. A. S.

S. Tehranian, F. Giovane, J. Blum, Y. L. Xu, and B. A. S. Gustafson, “Photophoresis of micrometer-sized particles in the free-molecular regime,” Int. J. Heat Mass Transfer 44(9), 1649–1657 (2001).
[CrossRef]

Guyot-Sionnest, P.

Halas, N. J.

B. Hester, G. K. Campbell, C. López-Mariscal, C. L. Filgueira, R. Huschka, N. J. Halas, and K. Helmerson, “Tunable optical tweezers for wavelength-dependent measurements,” Rev. Sci. Instrum. 83(4), 043114 (2012).
[CrossRef] [PubMed]

Han, Z.-F.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Haro-Gonzalez, P.

L. M. Maestro, P. Haro-Gonzalez, J. G. Coello, and D. Jaque, “Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100(20), 201110 (2012).
[CrossRef]

Haro-González, P.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Hart, S. J.

S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, and A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
[CrossRef]

He, L.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Helmerson, K.

B. Hester, G. K. Campbell, C. López-Mariscal, C. L. Filgueira, R. Huschka, N. J. Halas, and K. Helmerson, “Tunable optical tweezers for wavelength-dependent measurements,” Rev. Sci. Instrum. 83(4), 043114 (2012).
[CrossRef] [PubMed]

Hester, B.

B. Hester, G. K. Campbell, C. López-Mariscal, C. L. Filgueira, R. Huschka, N. J. Halas, and K. Helmerson, “Tunable optical tweezers for wavelength-dependent measurements,” Rev. Sci. Instrum. 83(4), 043114 (2012).
[CrossRef] [PubMed]

Hu, J.

Y. Liu and J. Hu, “Ultrasonic trapping of small particles by a vibrating rod,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(4), 798–805 (2008).
[CrossRef] [PubMed]

Huschka, R.

B. Hester, G. K. Campbell, C. López-Mariscal, C. L. Filgueira, R. Huschka, N. J. Halas, and K. Helmerson, “Tunable optical tweezers for wavelength-dependent measurements,” Rev. Sci. Instrum. 83(4), 043114 (2012).
[CrossRef] [PubMed]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Iglesias-de la Cruz, M. C.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Jäckel, F.

A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann, and F. Jäckel, “Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives,” Nanoscale 6(9), 4458–4474 (2014).
[CrossRef] [PubMed]

Jaque, D.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

L. M. Maestro, P. Haro-Gonzalez, J. G. Coello, and D. Jaque, “Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100(20), 201110 (2012).
[CrossRef]

Jonáš, A.

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

Kachynski, A. V.

Kaputa, D. S.

Kar, A. K.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Kim, S. Y.

S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, and A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
[CrossRef]

Kimel, S.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

Krishnan, P.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

Kuzmin, A. N.

Ladouceur, H. D.

S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, and A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
[CrossRef]

Leitz, G.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: Wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[CrossRef] [PubMed]

Li, M. Q.

M. Q. Li, “Scanning probe microscopy (STM/AFM) and applications in biology,” Applied Physics a Materials Science and Processing. 68(2), 255–258 (1999).
[CrossRef]

Liang, H.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

Link, S.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

Liou, G. F.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Liu, M.

Liu, Y.

Y. Liu and J. Hu, “Ultrasonic trapping of small particles by a vibrating rod,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(4), 798–805 (2008).
[CrossRef] [PubMed]

Liz-Marzan, L. M.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

I. Pastoriza-Santos, D. Gomez, J. Perez-Juste, L. M. Liz-Marzan, and P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
[CrossRef]

Lohmüller, T.

A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann, and F. Jäckel, “Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives,” Nanoscale 6(9), 4458–4474 (2014).
[CrossRef] [PubMed]

López-Mariscal, C.

B. Hester, G. K. Campbell, C. López-Mariscal, C. L. Filgueira, R. Huschka, N. J. Halas, and K. Helmerson, “Tunable optical tweezers for wavelength-dependent measurements,” Rev. Sci. Instrum. 83(4), 043114 (2012).
[CrossRef] [PubMed]

Lutich, A. A.

A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann, and F. Jäckel, “Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives,” Nanoscale 6(9), 4458–4474 (2014).
[CrossRef] [PubMed]

Maestro, L. M.

L. M. Maestro, P. Haro-Gonzalez, J. G. Coello, and D. Jaque, “Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100(20), 201110 (2012).
[CrossRef]

Mallavia, R.

A. Salinas-Castillo, M. Camprubí-Robles, and R. Mallavia, “Synthesis of a new fluorescent conjugated polymer microsphere for chemical sensing in aqueous media,” Chem. Commun. (Camb.) 46(8), 1263–1265 (2010).
[CrossRef] [PubMed]

Martinez Maestro, L.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Mohamed, M. B.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

Mosmann, T.

T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays,” J. Immunol. Methods 65(1-2), 55–63 (1983).
[CrossRef] [PubMed]

Mulvaney, P.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

I. Pastoriza-Santos, D. Gomez, J. Perez-Juste, L. M. Liz-Marzan, and P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
[CrossRef]

Nagy, A.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

Neuman, K. C.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

Oddershede, L. B.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Orrit, M.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian Fluctuations and Heating of an Optically Aligned Gold Nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Ozdemir, S. K.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Pastoriza-Santos, I.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

I. Pastoriza-Santos, D. Gomez, J. Perez-Juste, L. M. Liz-Marzan, and P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
[CrossRef]

Paterson, L.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Pavone, F. S.

Pelton, M.

Peper, S.

S. Peper, I. Tsagkatakis, and E. Bakker, “Cross-linked dodecyl acrylate microspheres: novel matrices for plasticizer-free optical ion sensing,” Anal. Chim. Acta 442(1), 25–33 (2001).
[CrossRef]

I. Tsagkatakis, S. Peper, and E. Bakker, “Spatial and spectral imaging of single micrometer-sized solvent cast fluorescent plasticized poly(vinyl chloride) sensing particles,” Anal. Chem. 73(2), 315–320 (2001).
[CrossRef] [PubMed]

Perez-Juste, J.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

I. Pastoriza-Santos, D. Gomez, J. Perez-Juste, L. M. Liz-Marzan, and P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
[CrossRef]

Perkins, T. T.

Pesic, J.

Prasad, P. N.

Pudavar, H. E.

Quidant, R.

Ramsay, W. T.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Reece, P.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[CrossRef] [PubMed]

Rodriguez Sevilla, P.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Ruijgrok, P. V.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian Fluctuations and Heating of an Optically Aligned Gold Nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Sacconi, L.

Salinas-Castillo, A.

A. Salinas-Castillo, M. Camprubí-Robles, and R. Mallavia, “Synthesis of a new fluorescent conjugated polymer microsphere for chemical sensing in aqueous media,” Chem. Commun. (Camb.) 46(8), 1263–1265 (2010).
[CrossRef] [PubMed]

Santacruz-Gomez, K.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Sanz-Rodríguez, F.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Scherer, N. F.

Schubert, O.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Selhuber-Unkel, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Seol, Y.

Shin, D.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

Si, S.

Solé, J. G.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Sonek, G. J.

W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33(9), 1735–1748 (1994).
[CrossRef] [PubMed]

W. H. Wright, G. J. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26(12), 2148–2157 (1990).
[CrossRef]

Sönnichsen, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Stevenson, D. J.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[CrossRef] [PubMed]

Stokes, N.

M. Gu, H. C. Bao, X. S. Gan, N. Stokes, and J. Z. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light-Science & Applications 3(1), e126 (2014).
[CrossRef]

Stringari, C.

Svoboda, K.

Tadir, Y.

W. H. Wright, G. J. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26(12), 2148–2157 (1990).
[CrossRef]

Taylor, J. D.

S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, and A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
[CrossRef]

Tchebotareva, A. L.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian Fluctuations and Heating of an Optically Aligned Gold Nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Tehranian, S.

S. Tehranian, F. Giovane, J. Blum, Y. L. Xu, and B. A. S. Gustafson, “Photophoresis of micrometer-sized particles in the free-molecular regime,” Int. J. Heat Mass Transfer 44(9), 1649–1657 (2001).
[CrossRef]

Terray, A.

S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, and A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
[CrossRef]

Tolic-Nørrelykke, I. M.

Toussaint, K. C.

Trang, T. C.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

Tsagkatakis, I.

I. Tsagkatakis, S. Peper, and E. Bakker, “Spatial and spectral imaging of single micrometer-sized solvent cast fluorescent plasticized poly(vinyl chloride) sensing particles,” Anal. Chem. 73(2), 315–320 (2001).
[CrossRef] [PubMed]

S. Peper, I. Tsagkatakis, and E. Bakker, “Cross-linked dodecyl acrylate microspheres: novel matrices for plasticizer-free optical ion sensing,” Anal. Chim. Acta 442(1), 25–33 (2001).
[CrossRef]

Tuck, S.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: Wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[CrossRef] [PubMed]

Urban, A. S.

A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann, and F. Jäckel, “Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives,” Nanoscale 6(9), 4458–4474 (2014).
[CrossRef] [PubMed]

Verhart, N. R.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian Fluctuations and Heating of an Optically Aligned Gold Nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Vu, K. T.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

Wright, W. H.

W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33(9), 1735–1748 (1994).
[CrossRef] [PubMed]

W. H. Wright, G. J. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26(12), 2148–2157 (1990).
[CrossRef]

Wu, J. Z.

M. Gu, H. C. Bao, X. S. Gan, N. Stokes, and J. Z. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light-Science & Applications 3(1), e126 (2014).
[CrossRef]

Xiao, Y.-F.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Xu, H. Y.

Z. P. Cai and H. Y. Xu, “Point temperature sensor based on green upconversion emission in an Er: ZBLALiP microsphere,” Sens. Actuators A Phys. 108(1-3), 187–192 (2003).
[CrossRef]

Xu, Y. L.

S. Tehranian, F. Giovane, J. Blum, Y. L. Xu, and B. A. S. Gustafson, “Photophoresis of micrometer-sized particles in the free-molecular regime,” Int. J. Heat Mass Transfer 44(9), 1649–1657 (2001).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Yang, L.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Ying-chun, C.

C. Ying-chun and W. Chien-ming, “To study the effect of paclitaxel on the cytoplasmic viscosity of murine macrophage immune cell RAW 264.7 using self-developed optical tweezers system,” Jpn. J. Appl. Phys. 51(12R), 127001 (2012).
[CrossRef]

Zelenina, A. S.

Zemánek, P.

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

Zijlstra, P.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian Fluctuations and Heating of an Optically Aligned Gold Nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Zins, I.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Adv. Mater. (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Anal. Chem. (1)

I. Tsagkatakis, S. Peper, and E. Bakker, “Spatial and spectral imaging of single micrometer-sized solvent cast fluorescent plasticized poly(vinyl chloride) sensing particles,” Anal. Chem. 73(2), 315–320 (2001).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

S. Peper, I. Tsagkatakis, and E. Bakker, “Cross-linked dodecyl acrylate microspheres: novel matrices for plasticizer-free optical ion sensing,” Anal. Chim. Acta 442(1), 25–33 (2001).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

L. M. Maestro, P. Haro-Gonzalez, J. G. Coello, and D. Jaque, “Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100(20), 201110 (2012).
[CrossRef]

S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, and A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
[CrossRef]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Applied Physics a Materials Science and Processing. (1)

M. Q. Li, “Scanning probe microscopy (STM/AFM) and applications in biology,” Applied Physics a Materials Science and Processing. 68(2), 255–258 (1999).
[CrossRef]

Biophys. J. (4)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: Wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[CrossRef] [PubMed]

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

Chem. Commun. (Camb.) (1)

A. Salinas-Castillo, M. Camprubí-Robles, and R. Mallavia, “Synthesis of a new fluorescent conjugated polymer microsphere for chemical sensing in aqueous media,” Chem. Commun. (Camb.) 46(8), 1263–1265 (2010).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2008).
[CrossRef] [PubMed]

Coord. Chem. Rev. (1)

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Electrophoresis (1)

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

Ieee J Sel Top Quant (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” Ieee J Sel Top Quant 6(6), 841–856 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. H. Wright, G. J. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26(12), 2148–2157 (1990).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

Y. Liu and J. Hu, “Ultrasonic trapping of small particles by a vibrating rod,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(4), 798–805 (2008).
[CrossRef] [PubMed]

Int. J. Heat Mass Transfer (1)

S. Tehranian, F. Giovane, J. Blum, Y. L. Xu, and B. A. S. Gustafson, “Photophoresis of micrometer-sized particles in the free-molecular regime,” Int. J. Heat Mass Transfer 44(9), 1649–1657 (2001).
[CrossRef]

J. Biomed. Opt. (1)

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[CrossRef] [PubMed]

J. Immunol. Methods (1)

T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays,” J. Immunol. Methods 65(1-2), 55–63 (1983).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

C. Ying-chun and W. Chien-ming, “To study the effect of paclitaxel on the cytoplasmic viscosity of murine macrophage immune cell RAW 264.7 using self-developed optical tweezers system,” Jpn. J. Appl. Phys. 51(12R), 127001 (2012).
[CrossRef]

Light-Science & Applications (1)

M. Gu, H. C. Bao, X. S. Gan, N. Stokes, and J. Z. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light-Science & Applications 3(1), e126 (2014).
[CrossRef]

Nano Lett. (1)

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Nanoscale (1)

A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann, and F. Jäckel, “Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives,” Nanoscale 6(9), 4458–4474 (2014).
[CrossRef] [PubMed]

Nat. Methods (1)

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

Nature (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Phys. Chem. Chem. Phys. (1)

I. Pastoriza-Santos, D. Gomez, J. Perez-Juste, L. M. Liz-Marzan, and P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian Fluctuations and Heating of an Optically Aligned Gold Nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

B. Hester, G. K. Campbell, C. López-Mariscal, C. L. Filgueira, R. Huschka, N. J. Halas, and K. Helmerson, “Tunable optical tweezers for wavelength-dependent measurements,” Rev. Sci. Instrum. 83(4), 043114 (2012).
[CrossRef] [PubMed]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

Z. P. Cai and H. Y. Xu, “Point temperature sensor based on green upconversion emission in an Er: ZBLALiP microsphere,” Sens. Actuators A Phys. 108(1-3), 187–192 (2003).
[CrossRef]

Small (1)

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic representation of the effective medium approach used to explain the optical properties of dielectric microspheres decorated with metallic nanoparticles. (b) Schematic representation of the synthesis procedure for the fabrication of the silica microspheres and gold nanorods construct. (c) TEM images of silica microspheres and gold nanorods construct.

Fig. 2
Fig. 2

(a).- Power dependence of the lateral trapping force acting on the µ-Sp + GNR construct as obtained for two trapping wavelengths (808 and 980 nm). Forces were determined by the so-called hydrodynamic-drag method. Dots are experimental data and dashed line is the best linear fit. The power dependence of the trapping force acting on bare µ-Sp is also included for comparison. (b).- Extinction cross section spectrum of the GNRs bonded to the surface of microspheres. Arrows indicate the wavelengths used for trapping.

Fig. 3
Fig. 3

Optical image of single and multiple optical trapping of µ-Sp + GNR construct ((a) and (b), respectively). The corresponding thermal images as obtained by using QD mediated fluorescence thermal imaging are shown in (c) and (d) respectively. Power of the 808 nm trapping laser beam was 22 mW. (e) Temperature increment per optically trapped µ-Sp + GNR constructs and µ-Sp as a function of the 808 nm trapping power. Dots are experimental data and dashed line is the best linear fit. Data were obtained by measuring the laser induced heating of multiple trapped particles dividing it by the numbered of trapped particles.

Fig. 4
Fig. 4

Optical image of a several macrophages incubated with µ-Sp + GNR construct. Intracellular µ-Sp + GNR construct are indicated by black and yellow arrows. Red arrow indicates the position of the 808 nm laser spot. (a) and (b) correspond to the images obtained before switching on the laser and 200 s after switching on the laser, respectively. The motion of the µ-Sp + GNR construct indicated by the black arrow towards the laser spot is evident. The time evolution of the relative position of this µ-Sp + GNR construct in respect to the laser spot is included in (c). For comparison, the time evolution of the position of a non-trapped µ-Sp + GNR is shown in (d). In absence of optical trapping force the µ-Sp + GNR does not experience any preferential motion.

Fig. 5
Fig. 5

Relative cell viability for the different concentrations and incubation times used.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F=QP n 1 /c
F trap = F drag = 6πηrν

Metrics