Abstract

A phase fluctuation cancellation approach for anonymous microwave signal transmission over fiber link is proposed and demonstrated. Unlike most previous schemes that used for active systems, our proposal is suitable for passive systems by utilizing the optical signal feedback and electrical signal phase-locking. Experimental results show that phase drifts of 7.7-ps, 54-ps and 96-ps (RMS value) for 2.45-GHz signals could be reduced to 3.1-ps, 3.8-ps and 8.5-ps after 1-km, 10-km and 25-km SMF transmission over an eight-hour period, respectively. Overall system performance is limited by the coherent Rayleigh noise and could be further optimized.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-term stable frequency transfer over an urban fiber link using microwave phase stabilization

Dong Hou, Peng Li, Cheng Liu, Jianye Zhao, and Zhigang Zhang
Opt. Express 19(2) 506-511 (2011)

Phase fluctuation compensation for long-term transfer of stable radio frequency over fiber link

Bo Ning, Peng Du, Dong Hou, and Jianye Zhao
Opt. Express 20(27) 28447-28454 (2012)

Distribution of a phase-stabilized 100.02 GHz millimeter-wave signal over a 160 km optical fiber with 4.1 × 10−17 instability

Nan Deng, Zhangweiyi Liu, Xiaocheng Wang, Tiantian Fu, Weilin Xie, and Yi Dong
Opt. Express 26(1) 339-346 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. F. Chen, J. Jiang, and D. J. Jones, “Remote distribution of a mode-locked pulse train with sub 40-as jitter,” Opt. Express 14(25), 12134–12144 (2006).
    [Crossref] [PubMed]
  2. D. Hou, P. Li, C. Liu, J. Zhao, and Z. Zhang, “Long-term stable frequency transfer over an urban fiber link using microwave phase stabilization,” Opt. Express 19(2), 506–511 (2011).
    [Crossref] [PubMed]
  3. K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
    [Crossref]
  4. B. Ning, P. Du, D. Hou, and J. Zhao, “Phase fluctuation compensation for long-term transfer of stable radio frequency over fiber link,” Opt. Express 20(27), 28447–28454 (2012).
    [Crossref] [PubMed]
  5. M. Tarenghi, “The Atacana large millimeer/submillimeter array: overview&status,” Astrophys. Space Sci. 313(1-3), 1–7 (2008).
    [Crossref]
  6. J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20(7), 1459–1467 (2003).
    [Crossref]
  7. J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
    [Crossref]
  8. G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett. 34(15), 2270–2272 (2009).
    [Crossref] [PubMed]
  9. G. Marra, H. S. Margolis, and D. J. Richardson, “Dissemination of an optical frequency comb over fiber with 3 × 10-18 fractional accuracy,” Opt. Express 20(2), 1775–1782 (2012).
    [Crossref] [PubMed]
  10. C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
    [Crossref] [PubMed]
  11. M. Fujieda, M. Kumagai, T. Gotoh, and M. Hosokawa, “Ultra stable frequency dissemination via optical fiber at NICT,” IEEE Trans. Instrum. Meas. 58(4), 1223–1228 (2009).
    [Crossref]
  12. G. Marra, H. S. Margolis, S. N. Lea, and P. Gill, “High-stability microwave frequency transfer by propagation of an optical frequency comb over 50 km of optical fiber,” Opt. Lett. 35(7), 1025–1027 (2010).
    [Crossref] [PubMed]
  13. G. Marra, R. Slavík, H. S. Margolis, S. N. Lea, P. Petropoulos, D. J. Richardson, and P. Gill, “High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser,” Opt. Lett. 36(4), 511–513 (2011).
    [Crossref] [PubMed]
  14. L. Zhang, L. Chang, Y. Dong, W. Xie, H. He, and W. Hu, “Phase drift cancellation of remote radio frequency transfer using an optoelectronic delay-locked loop,” Opt. Lett. 36(6), 873–875 (2011).
    [Crossref] [PubMed]
  15. P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25(8), 1284–1293 (2008).
    [Crossref]
  16. I. Stojanovic and W. C. Karl, “Imaging of moving targets with multi-static SAR using an over complete dictionary,” IEEE J. Sel. Top. Sign. Process. 4(1), 164–176 (2010).
    [Crossref]
  17. W. Y. Lei and B. X. Chen, “High-precision hyperboloid location method using passive time-difference-of-arrival measurements,” IET Radar Sonar Navig. 7(6), 710–717 (2013).
    [Crossref]
  18. Y. L. Peng, L. S. Yan, T. Zhou, W. L. Li, and Z. L. Li, “Near-field passive location technology based on phase measurements among distributed fiber sensor nodes,” J. Electron. Info. Technol. 35(12), 3041–3045 (2013).
    [Crossref]
  19. W. H. Chiu, Y. H. Huang, and T. H. Lin, “A dynamic phase error compensation technique for fast-locking phase-locked loops,” IEEE J. Solid-State Circuits 45(6), 1137–1149 (2010).
    [Crossref]

2013 (2)

W. Y. Lei and B. X. Chen, “High-precision hyperboloid location method using passive time-difference-of-arrival measurements,” IET Radar Sonar Navig. 7(6), 710–717 (2013).
[Crossref]

Y. L. Peng, L. S. Yan, T. Zhou, W. L. Li, and Z. L. Li, “Near-field passive location technology based on phase measurements among distributed fiber sensor nodes,” J. Electron. Info. Technol. 35(12), 3041–3045 (2013).
[Crossref]

2012 (2)

2011 (3)

2010 (3)

W. H. Chiu, Y. H. Huang, and T. H. Lin, “A dynamic phase error compensation technique for fast-locking phase-locked loops,” IEEE J. Solid-State Circuits 45(6), 1137–1149 (2010).
[Crossref]

G. Marra, H. S. Margolis, S. N. Lea, and P. Gill, “High-stability microwave frequency transfer by propagation of an optical frequency comb over 50 km of optical fiber,” Opt. Lett. 35(7), 1025–1027 (2010).
[Crossref] [PubMed]

I. Stojanovic and W. C. Karl, “Imaging of moving targets with multi-static SAR using an over complete dictionary,” IEEE J. Sel. Top. Sign. Process. 4(1), 164–176 (2010).
[Crossref]

2009 (2)

G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett. 34(15), 2270–2272 (2009).
[Crossref] [PubMed]

M. Fujieda, M. Kumagai, T. Gotoh, and M. Hosokawa, “Ultra stable frequency dissemination via optical fiber at NICT,” IEEE Trans. Instrum. Meas. 58(4), 1223–1228 (2009).
[Crossref]

2008 (3)

P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25(8), 1284–1293 (2008).
[Crossref]

M. Tarenghi, “The Atacana large millimeer/submillimeter array: overview&status,” Astrophys. Space Sci. 313(1-3), 1–7 (2008).
[Crossref]

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

2006 (1)

2005 (1)

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

2003 (1)

2000 (1)

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

Amy-Klein, A.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Asari, K.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

Bergquist, J. C.

Bize, S.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20(7), 1459–1467 (2003).
[Crossref]

Chambon, D.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Chang, L.

Chardonnet, C.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Chen, B. X.

W. Y. Lei and B. X. Chen, “High-precision hyperboloid location method using passive time-difference-of-arrival measurements,” IET Radar Sonar Navig. 7(6), 710–717 (2013).
[Crossref]

Chen, J.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Chen, Y. F.

Chiu, W. H.

W. H. Chiu, Y. H. Huang, and T. H. Lin, “A dynamic phase error compensation technique for fast-locking phase-locked loops,” IEEE J. Solid-State Circuits 45(6), 1137–1149 (2010).
[Crossref]

Clairon, A.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Cox, J. A.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Daussy, C.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Diddams, S. A.

Dong, Y.

Du, P.

Fujieda, M.

M. Fujieda, M. Kumagai, T. Gotoh, and M. Hosokawa, “Ultra stable frequency dissemination via optical fiber at NICT,” IEEE Trans. Instrum. Meas. 58(4), 1223–1228 (2009).
[Crossref]

Gill, P.

Goncharov, A.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Gotoh, T.

M. Fujieda, M. Kumagai, T. Gotoh, and M. Hosokawa, “Ultra stable frequency dissemination via optical fiber at NICT,” IEEE Trans. Instrum. Meas. 58(4), 1223–1228 (2009).
[Crossref]

Grosche, G.

Guinet, M.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Hall, J. L.

Hara, T.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

He, H.

Hollberg, L. W.

Holman, K. W.

Holzwarth, R.

Hosokawa, M.

M. Fujieda, M. Kumagai, T. Gotoh, and M. Hosokawa, “Ultra stable frequency dissemination via optical fiber at NICT,” IEEE Trans. Instrum. Meas. 58(4), 1223–1228 (2009).
[Crossref]

Hou, D.

Hu, W.

Huang, Y. H.

W. H. Chiu, Y. H. Huang, and T. H. Lin, “A dynamic phase error compensation technique for fast-locking phase-locked loops,” IEEE J. Solid-State Circuits 45(6), 1137–1149 (2010).
[Crossref]

Jiang, J.

Jones, D. J.

Jones, R. J.

Karl, W. C.

I. Stojanovic and W. C. Karl, “Imaging of moving targets with multi-static SAR using an over complete dictionary,” IEEE J. Sel. Top. Sign. Process. 4(1), 164–176 (2010).
[Crossref]

Kärtner, F. X.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Kawano, N.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

Kim, J.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Kitching, J.

Kuji, S.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

Kumagai, M.

M. Fujieda, M. Kumagai, T. Gotoh, and M. Hosokawa, “Ultra stable frequency dissemination via optical fiber at NICT,” IEEE Trans. Instrum. Meas. 58(4), 1223–1228 (2009).
[Crossref]

Lea, S. N.

Lei, W. Y.

W. Y. Lei and B. X. Chen, “High-precision hyperboloid location method using passive time-difference-of-arrival measurements,” IET Radar Sonar Navig. 7(6), 710–717 (2013).
[Crossref]

Li, P.

Li, W. L.

Y. L. Peng, L. S. Yan, T. Zhou, W. L. Li, and Z. L. Li, “Near-field passive location technology based on phase measurements among distributed fiber sensor nodes,” J. Electron. Info. Technol. 35(12), 3041–3045 (2013).
[Crossref]

Li, Z. L.

Y. L. Peng, L. S. Yan, T. Zhou, W. L. Li, and Z. L. Li, “Near-field passive location technology based on phase measurements among distributed fiber sensor nodes,” J. Electron. Info. Technol. 35(12), 3041–3045 (2013).
[Crossref]

Lin, T. H.

W. H. Chiu, Y. H. Huang, and T. H. Lin, “A dynamic phase error compensation technique for fast-locking phase-locked loops,” IEEE J. Solid-State Circuits 45(6), 1137–1149 (2010).
[Crossref]

Lipphardt, B.

Liu, C.

Lopez, O.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Lours, M.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Luiten, A. N.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Ma, L.-S.

Margolis, H. S.

Marra, G.

Narbonneau, F.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Newbury, N. R.

Ning, B.

Nishio, M.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

Peng, J.-L.

Peng, Y. L.

Y. L. Peng, L. S. Yan, T. Zhou, W. L. Li, and Z. L. Li, “Near-field passive location technology based on phase measurements among distributed fiber sensor nodes,” J. Electron. Info. Technol. 35(12), 3041–3045 (2013).
[Crossref]

Petropoulos, P.

Predehl, K.

Richardson, D. J.

Robertsson, L.

Santarelli, G.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Sato, K.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

Schnatz, H.

Slavík, R.

Sterr, U.

Stojanovic, I.

I. Stojanovic and W. C. Karl, “Imaging of moving targets with multi-static SAR using an over complete dictionary,” IEEE J. Sel. Top. Sign. Process. 4(1), 164–176 (2010).
[Crossref]

Swann, W. C.

Tarenghi, M.

M. Tarenghi, “The Atacana large millimeer/submillimeter array: overview&status,” Astrophys. Space Sci. 313(1-3), 1–7 (2008).
[Crossref]

Terra, O.

Tobar, M. E.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Vogt, F.

Williams, P. A.

Xie, W.

Yan, L. S.

Y. L. Peng, L. S. Yan, T. Zhou, W. L. Li, and Z. L. Li, “Near-field passive location technology based on phase measurements among distributed fiber sensor nodes,” J. Electron. Info. Technol. 35(12), 3041–3045 (2013).
[Crossref]

Ye, J.

Zhang, L.

Zhang, Z.

Zhao, J.

Zhou, T.

Y. L. Peng, L. S. Yan, T. Zhou, W. L. Li, and Z. L. Li, “Near-field passive location technology based on phase measurements among distributed fiber sensor nodes,” J. Electron. Info. Technol. 35(12), 3041–3045 (2013).
[Crossref]

Astrophys. Space Sci. (1)

M. Tarenghi, “The Atacana large millimeer/submillimeter array: overview&status,” Astrophys. Space Sci. 313(1-3), 1–7 (2008).
[Crossref]

IEEE J. Sel. Top. Sign. Process. (1)

I. Stojanovic and W. C. Karl, “Imaging of moving targets with multi-static SAR using an over complete dictionary,” IEEE J. Sel. Top. Sign. Process. 4(1), 164–176 (2010).
[Crossref]

IEEE J. Solid-State Circuits (1)

W. H. Chiu, Y. H. Huang, and T. H. Lin, “A dynamic phase error compensation technique for fast-locking phase-locked loops,” IEEE J. Solid-State Circuits 45(6), 1137–1149 (2010).
[Crossref]

IEEE Trans. Instrum. Meas. (2)

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

M. Fujieda, M. Kumagai, T. Gotoh, and M. Hosokawa, “Ultra stable frequency dissemination via optical fiber at NICT,” IEEE Trans. Instrum. Meas. 58(4), 1223–1228 (2009).
[Crossref]

IET Radar Sonar Navig. (1)

W. Y. Lei and B. X. Chen, “High-precision hyperboloid location method using passive time-difference-of-arrival measurements,” IET Radar Sonar Navig. 7(6), 710–717 (2013).
[Crossref]

J. Electron. Info. Technol. (1)

Y. L. Peng, L. S. Yan, T. Zhou, W. L. Li, and Z. L. Li, “Near-field passive location technology based on phase measurements among distributed fiber sensor nodes,” J. Electron. Info. Technol. 35(12), 3041–3045 (2013).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of typical passive system.
Fig. 2
Fig. 2 Schematic diagram of the proposed phase fluctuation compensation system. EPS: electronic phase shifter; FBG: fiber-Bragg-grating; PLL: phase-locked loop.
Fig. 3
Fig. 3 Principle of the PLL circuits.
Fig. 4
Fig. 4 Experimental setup of the proposed phase fluctuation compensation system. TLS: tunable laser source; MZM: Mach-Zehnder modulator; EDFA: Erbium-doped fiber amplifier; PC: polarization controller; FBG: fiber Bragg grating; OC: optical circulator; WDM: wavelength division multiplexer; PD: photo-detector; BPF: band pass filter; LNA: low noise amplifier; EPS: electronic phase shifter; LPF: low pass filter; PLL: phase-locked loop; OSC: oscilloscope.
Fig. 5
Fig. 5 Measured phase difference between the input anonymous signal and the final output signal over (a) 1-km (b) 10-km and (c) 25-km fiber link (blue: uncompensated; red: compensated).
Fig. 6
Fig. 6 Max and min power value of the triple-path signal sent to mixer after (a) 1-km (b) 10-km and (c) 25-km fiber link transmission (blue: min value; red: max value).
Fig. 7
Fig. 7 Phase noise of the measured final output signal through (a) 1-km (b) 10-km and (c) 25-km fiber link with/without compensation (blue: uncompensated; red: compensated).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ θ onepath (t)= ω RF t+ θ ref θ 0 + θ c (t) θ f (t) θ triplepath (t)= ω RF t+ θ ref θ 0 θ c (t)3 θ f (t) θ output (t)= ω RF t+ θ ref θ 0 θ c (t) θ f (t)

Metrics