Abstract

Real-time optical OFDM (OOFDM) transceivers with on-line software-controllable channel reconfigurability and transmission performance adaptability are experimentally demonstrated, for the first time, utilizing Hilbert-pair-based 32-tap digital orthogonal filters implemented in FPGAs. By making use of an 8-bit DAC/ADC operating at 2GS/s, an oversampling factor of 2 and an EML intensity modulator, the demonstrated RF conversion-free transceiver supports end-to-end real-time simultaneous adaptive transmissions, within a 1GHz signal spectrum region, of a 2.03Gb/s in-phase OOFDM channel and a 1.41Gb/s quadrature-phase OOFDM channel over a 25km SSMF IMDD system. In addition, detailed experimental explorations are also undertaken of key physical mechanisms limiting the maximum achievable transmission performance, impacts of transceiver’s channel multiplexing/demultiplexing operations on the system BER performance, and the feasibility of utilizing adaptive modulation to combat impairments associated with low-complexity digital filter designs. Furthermore, experimental results indicate that the transceiver incorporating a fixed digital orthogonal filter DSP architecture can be made transparent to various signal modulation formats up to 64-QAM.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental Demonstration of Upstream Transmission in Digital Filter Multiple Access PONs With Real-Time Reconfigurable Optical Network Units

Xiao Duan, Roger P. Giddings, Sa’ad Mansoor, and J. M. Tang
J. Opt. Commun. Netw. 9(1) 45-52 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Felix, N. Borges, H. P. Wu, M. Hanlon, M. Birk, and A. Tschersich, “Multi-layer SDN on a commercial network control platform for packet optical networks,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2014), paper Th5A.1.
    [Crossref]
  2. X. Li, K. Kanonakis, N. Cvijetic, A. Tanaka, C. M. Qiao, and T. Wang, “Joint bandwidth provisioning and cache management for video distribution in software-defined passive optical networks,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2014), paper Tu3F.5.
    [Crossref]
  3. L. Liu, Y. W. Yin, M. Xia, M. Shirazipour, Z. Q. Zhu, R. Proietti, Q. Xu, S. Dahlfort, and S. J. Ben Yoo, “Software-defined fragmentation-aware elastic optical networks enabled by openFlow,” in European Conference and Exhibition on Optical Communication, Technical Digest (CD) (Optical Society of America, 2013), paper We.3.E.2.
    [Crossref]
  4. N. Cvijetic, M. Angelou, A. Patel, P. N. Ji, and T. Wang, “Defining optical software-defined networks (SDN): from a compilation of demos to network model synthesis,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2013), paper OTh1H.1.
    [Crossref]
  5. N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, E. Hugues-Salas, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, H. Harai, and N. Wada, “Software defined networking (SDN) over space division multiplexing (SDM) optical networks: features, benefits and experimental demonstration,” Opt. Express 22(3), 3638–3647 (2014).
    [Crossref] [PubMed]
  6. M. Channegowda, R. Nejabati, and D. Simeonidou, “Software-defined optical networks technology and infrastructure: enabling software-defined optical network operations [Invited],” J. Opt. Netw. 5(10), A274–A282 (2013).
    [Crossref]
  7. N. Cvijetic, “Software-defined optical access networks for multiple broadband access solutions,” in OptoElectronics and Communications Conference and Photonics in Switching, Technical Digest (CD) (Optical Society of America, 2013), paper TuP2–1.
  8. R. P. Giddings, “Real-time digital signal processing for optical OFDM-based future optical access networks,” J. Lightwave Technol. 32(4), 553–570 (2014).
    [Crossref]
  9. M. Morant, T. M. F. Alves, R. Llorente, and A. V. T. Cartaxo, “Broadband impairment compensation in hybrid fiber-wireless OFDM long-reach PONs,” J. Lightwave Technol. 32(7), 1387–1393 (2014).
    [Crossref]
  10. M. Bolea, R. P. Giddings, and J. M. Tang, “Digital orthogonal filter-enabled optical OFDM channel multiplexing for software-reconfigurable elastic PONs,” J. Lightwave Technol. 32(6), 1200–1206 (2014).
    [Crossref]
  11. K. Kikuchi, “Principle of adaptive-filter-based signal processing in digital coherent receivers,” in European Conference and Exhibition on Optical Communication, Technical Digest (CD) (Optical Society of America, 2012), paper We.1.A.3.
    [Crossref]
  12. Y. Mori, C. Zhang, and K. Kikuchi, “Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals,” Opt. Express 32(4), 553–570 (2014).
    [PubMed]
  13. T. H. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. M. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
    [Crossref] [PubMed]
  14. A. Eghbali, H. Johansson, O. Gustafsson, and S. J. Savory, “Optimal least-squares FIR digital filters for compensation of chromatic dispersion in digital coherent optical receivers,” J. Lightwave Technol. 32(8), 553–570 (2014).
    [Crossref]
  15. L. Tao, Y. Wang, Y. L. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
    [Crossref] [PubMed]
  16. I. O. Miguel, T. J. Zuo, B. J. Jesper, Q. W. Zhong, X. G. Xu, and I. T. Monroy, “Towards 400GBASE 4-lane solution using direct detection of multiCAP signal in 14 GHz bandwidth per lane,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2013), paper PDP5C.10.
  17. J. L. Wei, J. D. Ingham, R. V. Penty, and I. H. White, “Update on performance studies of 100 gigabit ethernet enabled by advanced modulation formats,” presented at IEEE Next Generation 100G Optical Ethernet Study Group, Geneva, Switzerland, Sept. 2012.
  18. R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, and I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express 19(27), 26551–26556 (2011).
    [Crossref] [PubMed]
  19. S. Johnson, W. Mo, M. Cvijetic, J. He, J. Wissinger, and A. E. Willner, “Real-time software-defined dynamic resource allocation using OpenFlow for next-generation OFDM-based optical access networks,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2014), paper Tu2F.5.
    [Crossref]
  20. N. Cvijetic, A. Tanaka, P. N. Ji, K. Sethuraman, S. Murakami, and T. Wang, “SDN and OpenFlow for dynamic flex-grid optical access and aggregation networks,” J. Lightwave Technol. 32(4), 864–870 (2014).
    [Crossref]
  21. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
    [Crossref] [PubMed]
  22. X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
    [Crossref]
  23. G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm. 13(4), 620–632 (1995).
    [Crossref]

2014 (7)

Y. Mori, C. Zhang, and K. Kikuchi, “Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals,” Opt. Express 32(4), 553–570 (2014).
[PubMed]

N. Cvijetic, A. Tanaka, P. N. Ji, K. Sethuraman, S. Murakami, and T. Wang, “SDN and OpenFlow for dynamic flex-grid optical access and aggregation networks,” J. Lightwave Technol. 32(4), 864–870 (2014).
[Crossref]

A. Eghbali, H. Johansson, O. Gustafsson, and S. J. Savory, “Optimal least-squares FIR digital filters for compensation of chromatic dispersion in digital coherent optical receivers,” J. Lightwave Technol. 32(8), 553–570 (2014).
[Crossref]

R. P. Giddings, “Real-time digital signal processing for optical OFDM-based future optical access networks,” J. Lightwave Technol. 32(4), 553–570 (2014).
[Crossref]

M. Bolea, R. P. Giddings, and J. M. Tang, “Digital orthogonal filter-enabled optical OFDM channel multiplexing for software-reconfigurable elastic PONs,” J. Lightwave Technol. 32(6), 1200–1206 (2014).
[Crossref]

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, E. Hugues-Salas, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, H. Harai, and N. Wada, “Software defined networking (SDN) over space division multiplexing (SDM) optical networks: features, benefits and experimental demonstration,” Opt. Express 22(3), 3638–3647 (2014).
[Crossref] [PubMed]

M. Morant, T. M. F. Alves, R. Llorente, and A. V. T. Cartaxo, “Broadband impairment compensation in hybrid fiber-wireless OFDM long-reach PONs,” J. Lightwave Technol. 32(7), 1387–1393 (2014).
[Crossref]

2013 (2)

L. Tao, Y. Wang, Y. L. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

M. Channegowda, R. Nejabati, and D. Simeonidou, “Software-defined optical networks technology and infrastructure: enabling software-defined optical network operations [Invited],” J. Opt. Netw. 5(10), A274–A282 (2013).
[Crossref]

2012 (1)

2011 (2)

R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, and I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express 19(27), 26551–26556 (2011).
[Crossref] [PubMed]

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
[Crossref]

2010 (1)

1995 (1)

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm. 13(4), 620–632 (1995).
[Crossref]

Alves, T. M. F.

Amaya, N.

Awaji, Y.

Bolea, M.

Cartaxo, A. V. T.

Channegowda, M.

Chi, N.

Cvijetic, N.

N. Cvijetic, A. Tanaka, P. N. Ji, K. Sethuraman, S. Murakami, and T. Wang, “SDN and OpenFlow for dynamic flex-grid optical access and aggregation networks,” J. Lightwave Technol. 32(4), 864–870 (2014).
[Crossref]

Eghbali, A.

Friberg, A. T.

Gao, Y. L.

Giddings, R. P.

Gustafsson, O.

Harai, H.

Harman, D. D.

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm. 13(4), 620–632 (1995).
[Crossref]

Huang, G.

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm. 13(4), 620–632 (1995).
[Crossref]

Hugues-Salas, E.

Im, G. H.

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm. 13(4), 620–632 (1995).
[Crossref]

Jacobsen, G.

Jensen, J. B.

Ji, P. N.

N. Cvijetic, A. Tanaka, P. N. Ji, K. Sethuraman, S. Murakami, and T. Wang, “SDN and OpenFlow for dynamic flex-grid optical access and aggregation networks,” J. Lightwave Technol. 32(4), 864–870 (2014).
[Crossref]

Jin, X. Q.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
[Crossref]

Johansson, H.

Kikuchi, K.

Y. Mori, C. Zhang, and K. Kikuchi, “Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals,” Opt. Express 32(4), 553–570 (2014).
[PubMed]

Klaus, W.

Lau, A. P. T.

Li, J.

Llorente, R.

Lu, C.

Mandzik, A. V.

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm. 13(4), 620–632 (1995).
[Crossref]

Miyazawa, T.

Monroy, I. T.

Morant, M.

Mori, Y.

Y. Mori, C. Zhang, and K. Kikuchi, “Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals,” Opt. Express 32(4), 553–570 (2014).
[PubMed]

Murakami, S.

N. Cvijetic, A. Tanaka, P. N. Ji, K. Sethuraman, S. Murakami, and T. Wang, “SDN and OpenFlow for dynamic flex-grid optical access and aggregation networks,” J. Lightwave Technol. 32(4), 864–870 (2014).
[Crossref]

Nejabati, R.

Nguyen, M. H.

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm. 13(4), 620–632 (1995).
[Crossref]

Ou, Y.

Pham, T. T.

Popov, S.

Puttnam, B. J.

Quinlan, T.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
[Crossref]

Rashidi, M.

Rodes, R.

Rofoee, B. R.

Sakaguchi, J.

Savory, S. J.

Sethuraman, K.

N. Cvijetic, A. Tanaka, P. N. Ji, K. Sethuraman, S. Murakami, and T. Wang, “SDN and OpenFlow for dynamic flex-grid optical access and aggregation networks,” J. Lightwave Technol. 32(4), 864–870 (2014).
[Crossref]

Shu, Y.

Simeonidou, D.

Siuzdak, J.

Tanaka, A.

N. Cvijetic, A. Tanaka, P. N. Ji, K. Sethuraman, S. Murakami, and T. Wang, “SDN and OpenFlow for dynamic flex-grid optical access and aggregation networks,” J. Lightwave Technol. 32(4), 864–870 (2014).
[Crossref]

Tang, J. M.

Tao, L.

Turkiewicz, J.

Vanin, E.

Wada, N.

Walker, S.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
[Crossref]

Wang, K.

Wang, T.

N. Cvijetic, A. Tanaka, P. N. Ji, K. Sethuraman, S. Murakami, and T. Wang, “SDN and OpenFlow for dynamic flex-grid optical access and aggregation networks,” J. Lightwave Technol. 32(4), 864–870 (2014).
[Crossref]

Wang, Y.

Wei, J. L.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
[Crossref]

Werner, J. J.

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm. 13(4), 620–632 (1995).
[Crossref]

Wieckowski, M.

Xu, T. H.

Yan, S.

Zervas, G.

Zhang, C.

Y. Mori, C. Zhang, and K. Kikuchi, “Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals,” Opt. Express 32(4), 553–570 (2014).
[PubMed]

Zhang, Y. M.

IEEE J. Sel. Areas Comm. (1)

G. H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M. H. Nguyen, and J. J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm. 13(4), 620–632 (1995).
[Crossref]

IEEE Photonics Journal (1)

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics Journal 3(3), 500–511 (2011).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Netw. (1)

M. Channegowda, R. Nejabati, and D. Simeonidou, “Software-defined optical networks technology and infrastructure: enabling software-defined optical network operations [Invited],” J. Opt. Netw. 5(10), A274–A282 (2013).
[Crossref]

Opt. Express (6)

Y. Mori, C. Zhang, and K. Kikuchi, “Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals,” Opt. Express 32(4), 553–570 (2014).
[PubMed]

T. H. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. M. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
[Crossref] [PubMed]

L. Tao, Y. Wang, Y. L. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
[Crossref] [PubMed]

R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, and I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express 19(27), 26551–26556 (2011).
[Crossref] [PubMed]

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, E. Hugues-Salas, G. Zervas, R. Nejabati, D. Simeonidou, B. J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, H. Harai, and N. Wada, “Software defined networking (SDN) over space division multiplexing (SDM) optical networks: features, benefits and experimental demonstration,” Opt. Express 22(3), 3638–3647 (2014).
[Crossref] [PubMed]

Other (9)

S. Johnson, W. Mo, M. Cvijetic, J. He, J. Wissinger, and A. E. Willner, “Real-time software-defined dynamic resource allocation using OpenFlow for next-generation OFDM-based optical access networks,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2014), paper Tu2F.5.
[Crossref]

I. O. Miguel, T. J. Zuo, B. J. Jesper, Q. W. Zhong, X. G. Xu, and I. T. Monroy, “Towards 400GBASE 4-lane solution using direct detection of multiCAP signal in 14 GHz bandwidth per lane,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2013), paper PDP5C.10.

J. L. Wei, J. D. Ingham, R. V. Penty, and I. H. White, “Update on performance studies of 100 gigabit ethernet enabled by advanced modulation formats,” presented at IEEE Next Generation 100G Optical Ethernet Study Group, Geneva, Switzerland, Sept. 2012.

N. Cvijetic, “Software-defined optical access networks for multiple broadband access solutions,” in OptoElectronics and Communications Conference and Photonics in Switching, Technical Digest (CD) (Optical Society of America, 2013), paper TuP2–1.

K. Kikuchi, “Principle of adaptive-filter-based signal processing in digital coherent receivers,” in European Conference and Exhibition on Optical Communication, Technical Digest (CD) (Optical Society of America, 2012), paper We.1.A.3.
[Crossref]

A. Felix, N. Borges, H. P. Wu, M. Hanlon, M. Birk, and A. Tschersich, “Multi-layer SDN on a commercial network control platform for packet optical networks,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2014), paper Th5A.1.
[Crossref]

X. Li, K. Kanonakis, N. Cvijetic, A. Tanaka, C. M. Qiao, and T. Wang, “Joint bandwidth provisioning and cache management for video distribution in software-defined passive optical networks,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2014), paper Tu3F.5.
[Crossref]

L. Liu, Y. W. Yin, M. Xia, M. Shirazipour, Z. Q. Zhu, R. Proietti, Q. Xu, S. Dahlfort, and S. J. Ben Yoo, “Software-defined fragmentation-aware elastic optical networks enabled by openFlow,” in European Conference and Exhibition on Optical Communication, Technical Digest (CD) (Optical Society of America, 2013), paper We.3.E.2.
[Crossref]

N. Cvijetic, M. Angelou, A. Patel, P. N. Ji, and T. Wang, “Defining optical software-defined networks (SDN): from a compilation of demos to network model synthesis,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2013), paper OTh1H.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 FPGA-based real-time orthogonal filter DSP architectures implemented in the transmitter and receiver.
Fig. 2
Fig. 2 Discrete impulse and frequency responses of the shaping and matching filters. (a) Impulse responses of Channel 1. (b) Frequency responses of Channel 1. (c) Impulse responses of Channel 2. (d) Frequency responses of Channel 2. Figures (b) and (d) are plotted at frequency intervals equal to the subcarrier spacing, m represents the discrete frequency index. Equivalent continuous responses are also shown as dotted lines.
Fig. 3
Fig. 3 Real-time experimental system setup. FEA: fixed electrical attenuator, EML: electro-absorption modulated laser, VOA: variable optical attenuator, PIN + TIA: photodetector with integrated transimpedance amplifier.
Fig. 4
Fig. 4 Channel frequency responses for both the in-phase channel, Channel 1 and the quadrature-phase channel, Channel 2. The responses are normalized to the first subcarrier power of each corresponding channel and measurements are undertaken from the transmitter IFFT input to the receiver FFT output after transmitting through the 25km SSMF IMDD system.
Fig. 5
Fig. 5 Spectra of the electrical signal conveying both the in-phase and quadrature-phase channels. (a) Measured after DAC in the transmitter. (b) Measured before ADC in the receiver.
Fig. 6
Fig. 6 Optimum bit loading profiles for both in-phase and quadrature-phase channels. Their corresponding subcarrier power loading profiles are uniform.
Fig. 7
Fig. 7 BER performances as a function of received optical power. (a) Identical signal modulation formats of 16-QAM are taken on all the subcarriers of each channel. (b) Adaptive bit loading is applied for the subcarriers of each channel. The optimum bit loading profile is shown in Fig. 6. Uniform power loading profiles are adopted for all the cases.
Fig. 8
Fig. 8 Example received subcarrier constellations before channel equalization in the receiver for both channels.

Tables (1)

Tables Icon

Table 1 Transceiver and System Parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

s 1 ( k )=g( k )cos( 2π f c k T s )
s 2 ( k )=g( k )sin( 2π f c k T s )
g(k)= sin[π(1α)k']+4αk'cos[π(1+α)k'] πk'[1 (4αk') 2 ] ,k'= k16 M
m 1 ( k )= s 1 ( 31k )
m 2 ( k )= s 2 ( 31k )
s i ( k ) m j ( k )={ δ( k k 0 ) i=j 0 ij

Metrics