Abstract

Large-aperture periodically poled Mg-doped LiNbO3 device using X-axis Czochralski-grown MgLN crystal was proposed to avoid a laser-beam distortion problem. Availability of periodic poling in 5-mm-thick MgLN and compatibility of wavelength-conversion characteristics in QPM-OPO were evaluated by comparing with conventional arrangement using Z-axis-grown crystal.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large-aperture, axis-slant quasi-phase matching device using Mg-doped congruent LiNbO3 [Invited]

Hideki Ishizuki and Takunori Taira
Opt. Mater. Express 1(7) 1376-1382 (2011)

Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device

Hideki Ishizuki and Takunori Taira
Opt. Express 16(21) 16963-16970 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped grating,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
    [Crossref]
  2. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [Crossref]
  3. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993).
    [Crossref]
  4. H. Ishizuki, I. Shoji, and T. Taira, “Periodic poling characteristics of congruent MgO:LiNbO3 crystal at elevated temperatures,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
    [Crossref]
  5. T. Kobayashi, Y. Enomoto, D. Hua, C. Galve, and T. Taira, “A Compact, eye-safe lidar based on optical parametric oscillators for remote aerosol sensing,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer, 1997), pp. 11–14.
  6. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm x 5 mm aperture,” Opt. Lett. 30(21), 2918–2920 (2005).
    [Crossref] [PubMed]
  7. H. Ishizuki and T. Taira, “High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO3 crystal,” Opt. Express 18(1), 253–258 (2010).
    [Crossref] [PubMed]
  8. H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3.,” Opt. Express 20(18), 20002–20010 (2012).
    [Crossref] [PubMed]
  9. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1(2), 201–206 (2011).
    [Crossref]
  10. Y. Deng, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R. Kienberger, and N. Karpowicz, “Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 μm,” Opt. Lett. 37(23), 4973–4975 (2012).
    [Crossref] [PubMed]
  11. M. Hemmer, A. Thai, M. Baudisch, H. Ishizuki, T. Taira, and J. Biegert, “18-µJ energy, 160-kHz repetition rate, 250-MW peak power mid-IR OPCPA,” Chinese Opt. Lett., 11, 013202 (2013).
  12. M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys. 11(29), 6098–6106 (2009).
    [Crossref] [PubMed]
  13. V. Kemlin, D. Jegouso, J. Debray, E. Boursier, P. Segonds, B. Boulanger, H. Ishizuki, T. Taira, G. Mennerat, J.-M. Melkonian, and A. Godard, “Dual-wavelength source from 5%MgO:PPLN cylinders for the characterization of nonlinear infrared crystals,” Opt. Express 21(23), 28886–28891 (2013).
    [Crossref] [PubMed]
  14. K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
    [Crossref]
  15. E. Kitado, M. Fujimura, and T. Suhara, “Ultraviolet laser writing of ferroelectric-domain-inverted gratingS for MgO:LiNbO3 waveguide quasi-phase-matching devices,” Appl. Phys. Express 6(10), 102204 (2013).
    [Crossref]

2014 (1)

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (1)

2010 (1)

2009 (1)

M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys. 11(29), 6098–6106 (2009).
[Crossref] [PubMed]

2005 (1)

2003 (1)

H. Ishizuki, I. Shoji, and T. Taira, “Periodic poling characteristics of congruent MgO:LiNbO3 crystal at elevated temperatures,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993).
[Crossref]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

1990 (1)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped grating,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

Boulanger, B.

Boursier, E.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Canalias, C.

Debray, J.

Deng, Y.

Fan, S.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

Fattahi, H.

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Fujii, M.

M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys. 11(29), 6098–6106 (2009).
[Crossref] [PubMed]

Fujimura, M.

E. Kitado, M. Fujimura, and T. Suhara, “Ultraviolet laser writing of ferroelectric-domain-inverted gratingS for MgO:LiNbO3 waveguide quasi-phase-matching devices,” Appl. Phys. Express 6(10), 102204 (2013).
[Crossref]

Godard, A.

Gu, X.

Hayashi, S.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

Ishizuki, H.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

V. Kemlin, D. Jegouso, J. Debray, E. Boursier, P. Segonds, B. Boulanger, H. Ishizuki, T. Taira, G. Mennerat, J.-M. Melkonian, and A. Godard, “Dual-wavelength source from 5%MgO:PPLN cylinders for the characterization of nonlinear infrared crystals,” Opt. Express 21(23), 28886–28891 (2013).
[Crossref] [PubMed]

H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3.,” Opt. Express 20(18), 20002–20010 (2012).
[Crossref] [PubMed]

Y. Deng, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R. Kienberger, and N. Karpowicz, “Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 μm,” Opt. Lett. 37(23), 4973–4975 (2012).
[Crossref] [PubMed]

H. Ishizuki and T. Taira, “High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO3 crystal,” Opt. Express 18(1), 253–258 (2010).
[Crossref] [PubMed]

M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys. 11(29), 6098–6106 (2009).
[Crossref] [PubMed]

H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm x 5 mm aperture,” Opt. Lett. 30(21), 2918–2920 (2005).
[Crossref] [PubMed]

H. Ishizuki, I. Shoji, and T. Taira, “Periodic poling characteristics of congruent MgO:LiNbO3 crystal at elevated temperatures,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

Jegouso, D.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Karpowicz, N.

Kemlin, V.

Kienberger, R.

Kitado, E.

E. Kitado, M. Fujimura, and T. Suhara, “Ultraviolet laser writing of ferroelectric-domain-inverted gratingS for MgO:LiNbO3 waveguide quasi-phase-matching devices,” Appl. Phys. Express 6(10), 102204 (2013).
[Crossref]

Kobayashi, T.

Krausz, F.

Laurell, F.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Marcus, G.

Melkonian, J.-M.

Mennerat, G.

Metzger, T.

Minamide, H.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

Miyazaki, M.

M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys. 11(29), 6098–6106 (2009).
[Crossref] [PubMed]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993).
[Crossref]

Nawata, K.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

Nishihara, H.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped grating,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

Notake, T.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

Ossiander, M.

Pasiskevicius, V.

Pervak, V.

Qi, F.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

Saikawa, J.

M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys. 11(29), 6098–6106 (2009).
[Crossref] [PubMed]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993).
[Crossref]

Schwarz, A.

Segonds, P.

Shoji, I.

H. Ishizuki, I. Shoji, and T. Taira, “Periodic poling characteristics of congruent MgO:LiNbO3 crystal at elevated temperatures,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

Suhara, T.

E. Kitado, M. Fujimura, and T. Suhara, “Ultraviolet laser writing of ferroelectric-domain-inverted gratingS for MgO:LiNbO3 waveguide quasi-phase-matching devices,” Appl. Phys. Express 6(10), 102204 (2013).
[Crossref]

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped grating,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

Taira, T.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

V. Kemlin, D. Jegouso, J. Debray, E. Boursier, P. Segonds, B. Boulanger, H. Ishizuki, T. Taira, G. Mennerat, J.-M. Melkonian, and A. Godard, “Dual-wavelength source from 5%MgO:PPLN cylinders for the characterization of nonlinear infrared crystals,” Opt. Express 21(23), 28886–28891 (2013).
[Crossref] [PubMed]

H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3.,” Opt. Express 20(18), 20002–20010 (2012).
[Crossref] [PubMed]

Y. Deng, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R. Kienberger, and N. Karpowicz, “Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 μm,” Opt. Lett. 37(23), 4973–4975 (2012).
[Crossref] [PubMed]

H. Ishizuki and T. Taira, “High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO3 crystal,” Opt. Express 18(1), 253–258 (2010).
[Crossref] [PubMed]

M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys. 11(29), 6098–6106 (2009).
[Crossref] [PubMed]

H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm x 5 mm aperture,” Opt. Lett. 30(21), 2918–2920 (2005).
[Crossref] [PubMed]

H. Ishizuki, I. Shoji, and T. Taira, “Periodic poling characteristics of congruent MgO:LiNbO3 crystal at elevated temperatures,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

Takida, Y.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

Thilmann, N.

Ueffing, M.

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993).
[Crossref]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993).
[Crossref]

Zukauskas, A.

Appl. Phys. Express (1)

E. Kitado, M. Fujimura, and T. Suhara, “Ultraviolet laser writing of ferroelectric-domain-inverted gratingS for MgO:LiNbO3 waveguide quasi-phase-matching devices,” Appl. Phys. Express 6(10), 102204 (2013).
[Crossref]

Appl. Phys. Lett. (3)

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993).
[Crossref]

H. Ishizuki, I. Shoji, and T. Taira, “Periodic poling characteristics of congruent MgO:LiNbO3 crystal at elevated temperatures,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped grating,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys. 11(29), 6098–6106 (2009).
[Crossref] [PubMed]

Other (2)

M. Hemmer, A. Thai, M. Baudisch, H. Ishizuki, T. Taira, and J. Biegert, “18-µJ energy, 160-kHz repetition rate, 250-MW peak power mid-IR OPCPA,” Chinese Opt. Lett., 11, 013202 (2013).

T. Kobayashi, Y. Enomoto, D. Hua, C. Galve, and T. Taira, “A Compact, eye-safe lidar based on optical parametric oscillators for remote aerosol sensing,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer, 1997), pp. 11–14.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 PPMgLN device fabricated from (a) Z-axis CZ-grown crystal, and (b) X-axis CZ-grown crystal.
Fig. 2
Fig. 2 Set up for a beam-distortion measurement.
Fig. 3
Fig. 3 Measured He-Ne laser beam shapes, (a) Original, (b) after passing into MgLN from Z-grown without QPM, (c) MgLN from Z-grown with QPM, (d) MgLN from X-grown without QPM. The polarization of He-Ne laser was set along Y-axis of MgLN at (b)-(d). RZ presents a correlation factor of the propagated beam shape in Z-axis with a perfect Gaussian shape.
Fig. 4
Fig. 4 Fabricated periodic structure in X-axis-grown, 5-mm-thick MgLN Z-cut chip. The QPM period is 32 µm.
Fig. 5
Fig. 5 QPM-OPO signal wavelength characteristics on the QPM period and the PPMgLN temperature.
Fig. 6
Fig. 6 Measured He-Ne beam shapes after passing X-axis-grown PPMgLN. Propagation length in X-axis is 40 mm. He-Ne laser was polarized along (a) Y-axis and (b) Z-axis of original MgLN crystal.

Metrics