Abstract

Helium-ion-induced radiation damage in a LiNbO3-thin-film (10 μm-thick) modulator is experimentally investigated. The results demonstrate a degradation of the device performance in the presence of He+ irradiation at doses of ≥ 1016 cm−2. The experiments also show that the presence of the He+ stopping region, which determines the degree of overlap between the ion-damaged region and the guided optical mode, plays a major role in determining the degree of degradation in modulation performance. Our measurements showed that the higher overlap can lead to an additional ~5.5 dB propagation loss. The irradiation-induced change of crystal-film anisotropy(none)of ~36% was observed for the highest dose used in the experiments. The relevant device extinction ratio, VπL, and device insertion loss, as well the damage mechanisms of each of these parameters are also reported and discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Radiation damage by light- and heavy-ion bombardment of single-crystal LiNbO3

Hsu-Cheng Huang, Lihua Zhang, Girish Malladi, Jerry I. Dadap, Sandeep Manandhar, Kim Kisslinger, Rama Sesha R Vemuri, Vaithiyalingam Shutthanandan, Hassaram Bakhru, and Richard M. Osgood
Opt. Mater. Express 5(5) 1071-1088 (2015)

A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3

Hsu-Cheng Huang, Jerry I. Dadap, Ophir Gaathon, Irving P. Herman, Richard M. Osgood, Sasha Bakhru, and Hassaram Bakhru
Opt. Mater. Express 3(2) 126-142 (2013)

Optical effects of energetic copper-ion irradiation on copper mirrors

John S. Hartman
Appl. Opt. 20(23) 4062-4072 (1981)

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
    [Crossref]
  2. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
    [Crossref]
  3. P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
    [Crossref]
  4. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  5. L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
    [Crossref] [PubMed]
  6. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  7. R. C. Williamson and R. D. Esman, “RF Photonics,” J. Lightwave Technol. 26(9), 1145–1153 (2008).
    [Crossref]
  8. W. J. Bock, I. Gannot, and S. Tanev, eds., Optical Waveguide Sensing and Imaging (Springer, 2008).
  9. K. K. Wong, ed., Properties of Lithium Niobate (INSPEC, The Institution of Electrical Engineers, 2002).
  10. H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express 3(2), 126–142 (2013).
    [Crossref]
  11. H.-C. Huang, J. I. Dadap, I. P. Herman, H. Bakhru, and R. M. Osgood., “Micro-Raman spectroscopic visualization of lattice vibrations and strain in He+- implanted single-crystal LiNbO3,” Opt. Mater. Express 4(2), 338–345 (2014).
    [Crossref]
  12. E. I. Drummond, “Resistance of Ti:LiNbO3 devices to ionising radiation,” Electron. Lett. 23(23), 1214–1215 (1987).
  13. C. D’Hose, E. Cassan, J. Baggio, O. Musseau, and J. L. Leray, “Electrical and optical response of a Mach-Zehnder electrooptical modulator to pulsed irradiation,” IEEE Trans. Nucl. Sci. 45(3), 1524–1530 (1998).
    [Crossref]
  14. E. W. Taylor, “Ionization-induced refractive index and polarization effects in LiNbO3:Ti directional coupler waveguides,” J. Lightwave Technol. 9(3), 335–340 (1991).
    [Crossref]
  15. R. T. Schermer, F. Bucholtz, C. A. Villarruel, J. Gil Gil, T. D. Andreadis, and K. J. Williams, “Investigation of electrooptic modulator disruption by microwave-induced transients,” Opt. Express 17(25), 22586–22602 (2009).
    [Crossref] [PubMed]
  16. A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
    [Crossref]
  17. T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407 (2000).
    [Crossref]
  18. J. Ziegler, 2008, http://www.srim.org .
  19. R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
    [Crossref]
  20. A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
    [Crossref]
  21. A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
    [Crossref]
  22. G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, “The formation of waveguides and modulators in LiNbO3 by ion implantation,” J. Appl. Phys. 50(12), 7898 (1979).
    [Crossref]
  23. W. D. Johnston., “Optical Index Damage in LiNbO3 and Other Pyroelectric Insulators,” J. Appl. Phys. 41(8), 3279 (1970).
    [Crossref]
  24. S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
    [Crossref]
  25. M. C. Teich and B. E. A. Saleh, Fundamentals of Photonics 2nd Ed. (John Wiley & Sons, Inc, 2007).
  26. P. Bindner, A. Boudrioua, P. Moretti, and J. C. Loulergue, “Refractive index behaviors of helium implanted optical planar waveguides in LiNbO3, KTiOPO4 and Li2B4O7,” Nucl. Instrum. Meth. B 142(3), 329–337 (1998).
    [Crossref]
  27. J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 87(7), 3199–3202 (2000).
    [Crossref]
  28. A. Boudrioua, J. C. Loulergue, F. Laurell, and P. Moretti, “Nonlinear optical properties of (H+, He+)- implanted planar waveguides in z-cut lithium niobate: annealing effect,” J. Opt. Soc. Am. B 18(12), 1832–1840 (2001).
    [Crossref]
  29. F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
    [Crossref]
  30. L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis (North-Holland, 1986).

2014 (1)

2013 (3)

2011 (1)

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

2010 (1)

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

2009 (1)

2008 (2)

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

R. C. Williamson and R. D. Esman, “RF Photonics,” J. Lightwave Technol. 26(9), 1145–1153 (2008).
[Crossref]

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

2006 (1)

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

2004 (3)

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
[Crossref]

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
[Crossref]

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

2001 (1)

2000 (2)

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 87(7), 3199–3202 (2000).
[Crossref]

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407 (2000).
[Crossref]

1998 (3)

C. D’Hose, E. Cassan, J. Baggio, O. Musseau, and J. L. Leray, “Electrical and optical response of a Mach-Zehnder electrooptical modulator to pulsed irradiation,” IEEE Trans. Nucl. Sci. 45(3), 1524–1530 (1998).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

P. Bindner, A. Boudrioua, P. Moretti, and J. C. Loulergue, “Refractive index behaviors of helium implanted optical planar waveguides in LiNbO3, KTiOPO4 and Li2B4O7,” Nucl. Instrum. Meth. B 142(3), 329–337 (1998).
[Crossref]

1991 (1)

E. W. Taylor, “Ionization-induced refractive index and polarization effects in LiNbO3:Ti directional coupler waveguides,” J. Lightwave Technol. 9(3), 335–340 (1991).
[Crossref]

1987 (1)

E. I. Drummond, “Resistance of Ti:LiNbO3 devices to ionising radiation,” Electron. Lett. 23(23), 1214–1215 (1987).

1979 (1)

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, “The formation of waveguides and modulators in LiNbO3 by ion implantation,” J. Appl. Phys. 50(12), 7898 (1979).
[Crossref]

1970 (1)

W. D. Johnston., “Optical Index Damage in LiNbO3 and Other Pyroelectric Insulators,” J. Appl. Phys. 41(8), 3279 (1970).
[Crossref]

Andreadis, T. D.

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
[Crossref]

Baggio, J.

C. D’Hose, E. Cassan, J. Baggio, O. Musseau, and J. L. Leray, “Electrical and optical response of a Mach-Zehnder electrooptical modulator to pulsed irradiation,” IEEE Trans. Nucl. Sci. 45(3), 1524–1530 (1998).
[Crossref]

Bakhru, H.

H.-C. Huang, J. I. Dadap, I. P. Herman, H. Bakhru, and R. M. Osgood., “Micro-Raman spectroscopic visualization of lattice vibrations and strain in He+- implanted single-crystal LiNbO3,” Opt. Mater. Express 4(2), 338–345 (2014).
[Crossref]

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express 3(2), 126–142 (2013).
[Crossref]

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

Bakhru, S.

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express 3(2), 126–142 (2013).
[Crossref]

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Bindner, P.

P. Bindner, A. Boudrioua, P. Moretti, and J. C. Loulergue, “Refractive index behaviors of helium implanted optical planar waveguides in LiNbO3, KTiOPO4 and Li2B4O7,” Nucl. Instrum. Meth. B 142(3), 329–337 (1998).
[Crossref]

Boudrioua, A.

A. Boudrioua, J. C. Loulergue, F. Laurell, and P. Moretti, “Nonlinear optical properties of (H+, He+)- implanted planar waveguides in z-cut lithium niobate: annealing effect,” J. Opt. Soc. Am. B 18(12), 1832–1840 (2001).
[Crossref]

P. Bindner, A. Boudrioua, P. Moretti, and J. C. Loulergue, “Refractive index behaviors of helium implanted optical planar waveguides in LiNbO3, KTiOPO4 and Li2B4O7,” Nucl. Instrum. Meth. B 142(3), 329–337 (1998).
[Crossref]

Bucholtz, F.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

Cassan, E.

C. D’Hose, E. Cassan, J. Baggio, O. Musseau, and J. L. Leray, “Electrical and optical response of a Mach-Zehnder electrooptical modulator to pulsed irradiation,” IEEE Trans. Nucl. Sci. 45(3), 1524–1530 (1998).
[Crossref]

Chandler, P. J.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 87(7), 3199–3202 (2000).
[Crossref]

Chen, F.

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Chen, L.

Chiles, J.

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

D’Hose, C.

C. D’Hose, E. Cassan, J. Baggio, O. Musseau, and J. L. Leray, “Electrical and optical response of a Mach-Zehnder electrooptical modulator to pulsed irradiation,” IEEE Trans. Nucl. Sci. 45(3), 1524–1530 (1998).
[Crossref]

Dadap, J. I.

Destefanis, G. L.

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, “The formation of waveguides and modulators in LiNbO3 by ion implantation,” J. Appl. Phys. 50(12), 7898 (1979).
[Crossref]

Djukic, D.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Drummond, E. I.

E. I. Drummond, “Resistance of Ti:LiNbO3 devices to ionising radiation,” Electron. Lett. 23(23), 1214–1215 (1987).

Dunn, K.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Esman, R. D.

Evans-Lutterodt, K.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

Farmery, B. W.

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, “The formation of waveguides and modulators in LiNbO3 by ion implantation,” J. Appl. Phys. 50(12), 7898 (1979).
[Crossref]

Fathpour, S.

Gaathon, O.

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express 3(2), 126–142 (2013).
[Crossref]

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

Gailliard, J. P.

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, “The formation of waveguides and modulators in LiNbO3 by ion implantation,” J. Appl. Phys. 50(12), 7898 (1979).
[Crossref]

Gil Gil, J.

Gunter, P.

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

Herman, I. P.

Huang, H.-C.

Huang, M.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Johnston, W. D.

W. D. Johnston., “Optical Index Damage in LiNbO3 and Other Pyroelectric Insulators,” J. Appl. Phys. 41(8), 3279 (1970).
[Crossref]

Khan, S.

Kostritskii, S. M.

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
[Crossref]

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

Laulicht, B.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Laurell, F.

Lee, Y. S.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Leray, J. L.

C. D’Hose, E. Cassan, J. Baggio, O. Musseau, and J. L. Leray, “Electrical and optical response of a Mach-Zehnder electrooptical modulator to pulsed irradiation,” IEEE Trans. Nucl. Sci. 45(3), 1524–1530 (1998).
[Crossref]

Levy, M.

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407 (2000).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

Ligeon, E. L.

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, “The formation of waveguides and modulators in LiNbO3 by ion implantation,” J. Appl. Phys. 50(12), 7898 (1979).
[Crossref]

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

Loulergue, J. C.

A. Boudrioua, J. C. Loulergue, F. Laurell, and P. Moretti, “Nonlinear optical properties of (H+, He+)- implanted planar waveguides in z-cut lithium niobate: annealing effect,” J. Opt. Soc. Am. B 18(12), 1832–1840 (2001).
[Crossref]

P. Bindner, A. Boudrioua, P. Moretti, and J. C. Loulergue, “Refractive index behaviors of helium implanted optical planar waveguides in LiNbO3, KTiOPO4 and Li2B4O7,” Nucl. Instrum. Meth. B 142(3), 329–337 (1998).
[Crossref]

Ma, J.

Moretti, P.

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
[Crossref]

A. Boudrioua, J. C. Loulergue, F. Laurell, and P. Moretti, “Nonlinear optical properties of (H+, He+)- implanted planar waveguides in z-cut lithium niobate: annealing effect,” J. Opt. Soc. Am. B 18(12), 1832–1840 (2001).
[Crossref]

P. Bindner, A. Boudrioua, P. Moretti, and J. C. Loulergue, “Refractive index behaviors of helium implanted optical planar waveguides in LiNbO3, KTiOPO4 and Li2B4O7,” Nucl. Instrum. Meth. B 142(3), 329–337 (1998).
[Crossref]

Musseau, O.

C. D’Hose, E. Cassan, J. Baggio, O. Musseau, and J. L. Leray, “Electrical and optical response of a Mach-Zehnder electrooptical modulator to pulsed irradiation,” IEEE Trans. Nucl. Sci. 45(3), 1524–1530 (1998).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Ofan, A.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

Olivares, J.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 87(7), 3199–3202 (2000).
[Crossref]

Osgood, R. M.

H.-C. Huang, J. I. Dadap, I. P. Herman, H. Bakhru, and R. M. Osgood., “Micro-Raman spectroscopic visualization of lattice vibrations and strain in He+- implanted single-crystal LiNbO3,” Opt. Mater. Express 4(2), 338–345 (2014).
[Crossref]

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express 3(2), 126–142 (2013).
[Crossref]

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407 (2000).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

Perez, A.

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, “The formation of waveguides and modulators in LiNbO3 by ion implantation,” J. Appl. Phys. 50(12), 7898 (1979).
[Crossref]

Rabiei, P.

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

Ramadan, T. A.

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407 (2000).
[Crossref]

Rams, J.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 87(7), 3199–3202 (2000).
[Crossref]

Reano, R. M.

Roth, R. M.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Schermer, R. T.

Taylor, E. W.

E. W. Taylor, “Ionization-induced refractive index and polarization effects in LiNbO3:Ti directional coupler waveguides,” J. Lightwave Technol. 9(3), 335–340 (1991).
[Crossref]

Townsend, P. D.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 87(7), 3199–3202 (2000).
[Crossref]

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, “The formation of waveguides and modulators in LiNbO3 by ion implantation,” J. Appl. Phys. 50(12), 7898 (1979).
[Crossref]

Valette, S.

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, “The formation of waveguides and modulators in LiNbO3 by ion implantation,” J. Appl. Phys. 50(12), 7898 (1979).
[Crossref]

Vanamurthy, L.

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

Villarruel, C. A.

Wang, K.-M.

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Wang, X.-L.

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Welch, D.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

Williams, K. J.

Williamson, R. C.

Wood, M. G.

Wu, L.

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Zhang, L.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

Zhu, Y.

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

Appl. Phys. Lett. (5)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[Crossref]

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett. 93(18), 181906 (2008).
[Crossref]

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407 (2000).
[Crossref]

R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett. 89(11), 112906 (2006).
[Crossref]

Electron. Lett. (1)

E. I. Drummond, “Resistance of Ti:LiNbO3 devices to ionising radiation,” Electron. Lett. 23(23), 1214–1215 (1987).

IEEE Trans. Nucl. Sci. (1)

C. D’Hose, E. Cassan, J. Baggio, O. Musseau, and J. L. Leray, “Electrical and optical response of a Mach-Zehnder electrooptical modulator to pulsed irradiation,” IEEE Trans. Nucl. Sci. 45(3), 1524–1530 (1998).
[Crossref]

J. Appl. Phys. (3)

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, “The formation of waveguides and modulators in LiNbO3 by ion implantation,” J. Appl. Phys. 50(12), 7898 (1979).
[Crossref]

W. D. Johnston., “Optical Index Damage in LiNbO3 and Other Pyroelectric Insulators,” J. Appl. Phys. 41(8), 3279 (1970).
[Crossref]

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 87(7), 3199–3202 (2000).
[Crossref]

J. Lightwave Technol. (2)

E. W. Taylor, “Ionization-induced refractive index and polarization effects in LiNbO3:Ti directional coupler waveguides,” J. Lightwave Technol. 9(3), 335–340 (1991).
[Crossref]

R. C. Williamson and R. D. Esman, “RF Photonics,” J. Lightwave Technol. 26(9), 1145–1153 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nucl. Instrum. Meth. B (1)

P. Bindner, A. Boudrioua, P. Moretti, and J. C. Loulergue, “Refractive index behaviors of helium implanted optical planar waveguides in LiNbO3, KTiOPO4 and Li2B4O7,” Nucl. Instrum. Meth. B 142(3), 329–337 (1998).
[Crossref]

Opt. Express (3)

Opt. Mater. (1)

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. B (2)

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (2011).
[Crossref]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010).
[Crossref]

Phys. Status Solidi A (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
[Crossref]

Phys. Status Solidi C (1)

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
[Crossref]

Other (5)

M. C. Teich and B. E. A. Saleh, Fundamentals of Photonics 2nd Ed. (John Wiley & Sons, Inc, 2007).

L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis (North-Holland, 1986).

W. J. Bock, I. Gannot, and S. Tanev, eds., Optical Waveguide Sensing and Imaging (Springer, 2008).

K. K. Wong, ed., Properties of Lithium Niobate (INSPEC, The Institution of Electrical Engineers, 2002).

J. Ziegler, 2008, http://www.srim.org .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Examples of a CIS LiNbO3 thin film (~10 μm thick) and its parent crystal; (b) and (c) are optical images of a side view of the CIS film before and after PLA (Post Liftoff Annealing). It is clear that before PLA [Fig. 1(b)], the as-exfoliated CIS film is stressed, showing the reflection of the film on the underlying substrate. After annealing at 600°C for 10 hours, the stress is fully released and a recovered, planar film is obtained [Fig. 1(c)]. Panel (d) displays an SEM image showing the thin-film EO modulator. The upper inset is the corresponding optical image; the lower image is an SEM micrograph showing the device cross section at its input. Note that the facets of the device are “suspended” in air for better optical coupling efficiency.

Fig. 2
Fig. 2

Schematic of the experimental setup for free-space coupling. The collimated beam is focused by a 10 × objective lens to achieve a spot size of ~10 μm at the device input. The outgoing light is then collected by another 7 × lens. A pellicle beamsplitter was used so that ~10% of light is reflected to an IR camera for the observation of coupling while ~90% of light is transmitted to the photodetector. The electro-optic measurement is performed by applying an external voltage directly to the top electrode of the film. P: polarizer; f: lens; PD: photodetector.

Fig. 3
Fig. 3

(a) and (b) display examples of the electro-optic modulation using virgin LNTF: a ~10 dB extinction ratio (modulation depth of ~90%) with ~7.5 V-cm VπL parameters were measured (see text for a description of the measurement protocol). A sine-squared function was used for the data fitting (solid lines). The device overall length is ~3.5 mm, with an effective electrode length of ~2.1 mm.

Fig. 4
Fig. 4

Panels (a) and (b) are optical images of the modulators after 3.6 MeV He+ irradiation at a dose of ≥ 1016 cm−2. It is clear that the film is strained and, when the dose is 5 × 1016 cm−2, the stress is large enough to result in film fracture. Panels (c) and (d) are measured data showing that as the dose is increased, device performance degrades, viz a ~9 dB additional waveguide loss, ~5 dB lower extinction ratio and a ~73% increased VπL value indicating degradation for a dose of 2 × 1016 cm−2. The inset in Fig. 4(c) shows the degradation of the extinction ratio using the normalized transmitted power for each irradiated condition, where Pnorm is the normalized transmitted power. Figure 4(e) and the inset show a 2.3 MeV He+ irradiated case at a dose of 1 × 1016 cm−2. Compared with 3.6 MeV He+ with the same irradiation dose [i.e. 1 × 1016 cm−2, blue curve in panel (c)], additional ~5.5 dB propagation loss is observed for 2.3 MeV He+ irradiation, due to higher overlap of the damaged region (in the center) and the optical guided mode.

Fig. 5
Fig. 5

(a) and (b): optical top-surface images of end-facet-coupled light using a visible (red) light source to directly observe scattering. (a): light coupled into an unirradiated LNTF sample; (b) light coupled into an irradiated thin film (2.3 MeV He+ to a dose of 2 × 1016 cm−2). In (b), the scattered light through the top surface of a thin-film modulator is readily seen (designated by a yellow arrow. See text for a discussion of the origin of the scattering. (c): The change of LNTF index anisotropy/birefringence under different conditions (wavelength λ ~1570 nm). PLA stands for Post Liftoff Annealing; see Figs. 1(b) and 1(c) for the corresponding optical images. After PLA, the thin-film modulator is irradiated with 3.6 MeV He+ with different doses. It is clear that as the irradiation dose is increased, the damage of lattice structure is enhanced such that the change of anisotropy (C factor) is greater. Note that if the material is optically-isotropic, C = 1.

Tables (1)

Tables Icon

Table 1 Summary of Device Parameters in the Absence and Presence of Different Irradiation Conditions and Examples of the Corresponding Damage Mechanisms

Metrics