Abstract

We report a highly sensitive fiber-optic sensor based on two cascaded intrinsic fiber Fabry-Perot interferometers (IFFPIs). The cascaded IFFPIs have different free spectral ranges (FSRs) and are formed by a short section of hollow core photonic crystal fiber sandwiched by two single mode fibers. With the superposition of reflective spectrum with different FSRs, the Vernier effect will be generated in the proposed sensor and we found that the strain sensitivity of the proposed sensor can be improved from 1.6 pm/με for a single IFFPI sensor to 47.14 pm/με by employing the Vernier effect. The sensor embed with a metglas ribbon can be also used to measure the magnetic field according to the similar principle. The sensitivity of the magnetic field measurement is achieved to be 71.57 pm/Oe that is significantly larger than the 2.5 pm/Oe for a single IFFPI sensor.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Wu, T. Zhu, G. Y. Wang, J. Y. Fu, X. G. Lin, and G. L. Gou, “Intrinsic fiber-optic Fabry-Perot interferometer based on arc discharge and single-mode fiber,” Appl. Opt. 52(12), 2670–2675 (2013).
    [CrossRef] [PubMed]
  2. Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Y. Liu, G. Y. Kai, and X. Y. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core Photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
    [CrossRef]
  3. D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
    [CrossRef]
  4. J. J. Tian, Y. J. Lu, Q. Zhang, and M. Han, “Microfluidic refractive index sensor based on an all-silica in-line Fabry-Perot interferometer fabricated with microstructured fibers,” Opt. Express 21(5), 6633–6639 (2013).
    [CrossRef] [PubMed]
  5. Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
    [CrossRef]
  6. O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
    [CrossRef]
  7. D. X. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817–23822 (2009).
    [CrossRef] [PubMed]
  8. L. Jin, M. Y. Li, and J. J. He, “Highly-sensitive optical sensor using two cascaded-microring resonators with Vernier effect,” in Asia Communications and Photonics Conference, Technical Digest (TD), (Optical Society of America, 2009), paper TuM4.
    [CrossRef]
  9. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [CrossRef] [PubMed]
  10. L. Jin, M. Y. Li, and J. J. He, “Analysis of wavelength and intensity interrogation methods in cascaded double-ring sensors,” J. Lightwave Technol. 30(12), 1994–2002 (2012).
    [CrossRef]
  11. L. Jin, M. Y. Li, and J. J. He, “Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source,” Opt. Lett. 36(7), 1128–1130 (2011).
    [CrossRef] [PubMed]
  12. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  13. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  14. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
    [CrossRef] [PubMed]
  15. P. Zu, C. C. Chan, W. S. Lew, L. M. Hu, Y. X. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Y. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4(2), 490–498 (2012).
  16. L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. K. Sun, X. P. Dong, and Y. S. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photon. J. 4(6), 2094–2104 (2012).
  17. H. T. Savage and M. L. Spanot, “Theory and application of highly magnetoelastic Metglas 2605SC,” J. Appl. Phys. 53(11), 8092–8097 (1982).
    [CrossRef]

2013 (2)

2012 (6)

F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
[CrossRef] [PubMed]

L. Jin, M. Y. Li, and J. J. He, “Analysis of wavelength and intensity interrogation methods in cascaded double-ring sensors,” J. Lightwave Technol. 30(12), 1994–2002 (2012).
[CrossRef]

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[CrossRef]

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

P. Zu, C. C. Chan, W. S. Lew, L. M. Hu, Y. X. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Y. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4(2), 490–498 (2012).

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. K. Sun, X. P. Dong, and Y. S. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photon. J. 4(6), 2094–2104 (2012).

2011 (1)

2010 (1)

2009 (2)

D. X. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817–23822 (2009).
[CrossRef] [PubMed]

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

2008 (1)

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Y. Liu, G. Y. Kai, and X. Y. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core Photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

1982 (1)

H. T. Savage and M. L. Spanot, “Theory and application of highly magnetoelastic Metglas 2605SC,” J. Appl. Phys. 53(11), 8092–8097 (1982).
[CrossRef]

Araujo, L.

Aref, S. H.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Baptista, J. M.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Bienstman, P.

Bogaerts, W.

Bouwmans, G.

Chan, C. C.

P. Zu, C. C. Chan, W. S. Lew, L. M. Hu, Y. X. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Y. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4(2), 490–498 (2012).

Chen, L. H.

P. Zu, C. C. Chan, W. S. Lew, L. M. Hu, Y. X. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Y. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4(2), 490–498 (2012).

Chen, Z. H.

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

Chiang, K. S.

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. K. Sun, X. P. Dong, and Y. S. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photon. J. 4(6), 2094–2104 (2012).

Claes, T.

Dai, D. X.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Deng, M.

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. K. Sun, X. P. Dong, and Y. S. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photon. J. 4(6), 2094–2104 (2012).

Dong, X. P.

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. K. Sun, X. P. Dong, and Y. S. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photon. J. 4(6), 2094–2104 (2012).

Dong, X. Y.

P. Zu, C. C. Chan, W. S. Lew, L. M. Hu, Y. X. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Y. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4(2), 490–498 (2012).

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Y. Liu, G. Y. Kai, and X. Y. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core Photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Farahi, F.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Favero, F. C.

Finazzi, V.

Frazão, O.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Fu, J. Y.

Gao, L.

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. K. Sun, X. P. Dong, and Y. S. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photon. J. 4(6), 2094–2104 (2012).

Gou, G. L.

Han, M.

He, J. J.

Hou, Y. S.

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. K. Sun, X. P. Dong, and Y. S. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photon. J. 4(6), 2094–2104 (2012).

Hu, D. J. J.

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

Hu, J. J.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Y. Liu, G. Y. Kai, and X. Y. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core Photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Hu, L. M.

P. Zu, C. C. Chan, W. S. Lew, L. M. Hu, Y. X. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Y. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4(2), 490–498 (2012).

Jiang, M.

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

Jin, L.

Jin, Y. X.

P. Zu, C. C. Chan, W. S. Lew, L. M. Hu, Y. X. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Y. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4(2), 490–498 (2012).

Kai, G. Y.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Y. Liu, G. Y. Kai, and X. Y. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core Photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kobelke, J.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Latifi, H.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Lew, W. S.

P. Zu, C. C. Chan, W. S. Lew, L. M. Hu, Y. X. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Y. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4(2), 490–498 (2012).

Li, M. Y.

Liew, H. F.

P. Zu, C. C. Chan, W. S. Lew, L. M. Hu, Y. X. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Y. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4(2), 490–498 (2012).

Lim, J. L.

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

Lin, X. G.

Liu, Z. Y.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Y. Liu, G. Y. Kai, and X. Y. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core Photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Lu, Y. J.

Luan, F.

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

Lv, F. Y.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Y. Liu, G. Y. Kai, and X. Y. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core Photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Lv, R. Q.

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[CrossRef]

Milenko, K. B.

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Pruneri, V.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Santos, J. L.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Savage, H. T.

H. T. Savage and M. L. Spanot, “Theory and application of highly magnetoelastic Metglas 2605SC,” J. Appl. Phys. 53(11), 8092–8097 (1982).
[CrossRef]

Schuster, K.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Shi, Q.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Y. Liu, G. Y. Kai, and X. Y. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core Photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Shum, P. P.

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

Spanot, M. L.

H. T. Savage and M. L. Spanot, “Theory and application of highly magnetoelastic Metglas 2605SC,” J. Appl. Phys. 53(11), 8092–8097 (1982).
[CrossRef]

Sun, Q. Z.

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

Sun, X. K.

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. K. Sun, X. P. Dong, and Y. S. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photon. J. 4(6), 2094–2104 (2012).

Tian, J. J.

Tong, W. J.

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

Villatoro, J.

Wang, G. H.

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

Wang, G. Y.

Wang, Q.

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[CrossRef]

Wang, Y. X.

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

Wang, Z.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Y. Liu, G. Y. Kai, and X. Y. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core Photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Wei, H. F.

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

Wolinski, T. R.

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

Wong, W. C.

P. Zu, C. C. Chan, W. S. Lew, L. M. Hu, Y. X. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Y. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4(2), 490–498 (2012).

Wu, D.

Ying, Y.

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[CrossRef]

Zhang, Q.

Zhang, T. S.

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

Zhao, Y.

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[CrossRef]

Zhu, T.

D. Wu, T. Zhu, G. Y. Wang, J. Y. Fu, X. G. Lin, and G. L. Gou, “Intrinsic fiber-optic Fabry-Perot interferometer based on arc discharge and single-mode fiber,” Appl. Opt. 52(12), 2670–2675 (2013).
[CrossRef] [PubMed]

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. K. Sun, X. P. Dong, and Y. S. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photon. J. 4(6), 2094–2104 (2012).

Zu, P.

P. Zu, C. C. Chan, W. S. Lew, L. M. Hu, Y. X. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Y. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4(2), 490–498 (2012).

Appl. Opt. (1)

IEEE Photon. J. (2)

P. Zu, C. C. Chan, W. S. Lew, L. M. Hu, Y. X. Jin, H. F. Liew, L. H. Chen, W. C. Wong, and X. Y. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J. 4(2), 490–498 (2012).

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. K. Sun, X. P. Dong, and Y. S. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photon. J. 4(6), 2094–2104 (2012).

IEEE Photon. Technol. Lett. (2)

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Y. Liu, G. Y. Kai, and X. Y. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core Photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

IEEE Sens. J. (1)

D. J. J. Hu, Y. X. Wang, J. L. Lim, T. S. Zhang, K. B. Milenko, Z. H. Chen, M. Jiang, G. H. Wang, F. Luan, P. P. Shum, Q. Z. Sun, H. F. Wei, W. J. Tong, and T. R. Wolinski, “Novel miniaturized Fabry–Perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere Tip,” IEEE Sens. J. 12(5), 1239–1245 (2012).
[CrossRef]

J. Appl. Phys. (1)

H. T. Savage and M. L. Spanot, “Theory and application of highly magnetoelastic Metglas 2605SC,” J. Appl. Phys. 53(11), 8092–8097 (1982).
[CrossRef]

J. Lightwave Technol. (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

L. Jin, M. Y. Li, and J. J. He, “Analysis of wavelength and intensity interrogation methods in cascaded double-ring sensors,” J. Lightwave Technol. 30(12), 1994–2002 (2012).
[CrossRef]

Opt. Express (4)

Opt. Laser Technol. (1)

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[CrossRef]

Opt. Lett. (1)

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other (1)

L. Jin, M. Y. Li, and J. J. He, “Highly-sensitive optical sensor using two cascaded-microring resonators with Vernier effect,” in Asia Communications and Photonics Conference, Technical Digest (TD), (Optical Society of America, 2009), paper TuM4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The schematic configuration of the present optical sensor based on cascaded IFFPI; (b) The optical microscopic image of the HC-PCF cross-section structure

Fig. 2
Fig. 2

The fundamental mode field of the HC-PCF (a) and SMF (b) at 1500 nm.

Fig. 3
Fig. 3

(a) Reflection spectrum of reference IFFPI; (b) Reflection spectrum of sensing IFFPI before (black solid line) and after (red dashed line) elongating; (c) Reflection spectrum of the proposed sensor before (black solid line) and after (red dashed line) the sensing IFFPI is elongating.

Fig. 4
Fig. 4

Schematic of the experimental setup. BBS stands for broadband optical source; OSA stands for optical spectrum analyzer; FOC stands for fiber optic circulator.

Fig. 5
Fig. 5

(a) The response of the output port of the cascaded IFFPIs in the broad band; (b) the enlarged view for the valley.

Fig. 6
Fig. 6

As the strain-change increases, (a) the amplitude of all the dips locating at different resonance wavelengths and the fitting envelope curve according to Eq. (1); (b) the wavelength corresponding to the dip of the envolpe function.

Fig. 7
Fig. 7

(a) The fitting envelope curve according to Eq. (1); (b) The wavelength of the dip as a function of the magnetic field intensity.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R C =2acos[ 2π( L R L S )n λ ].
Δ λ FS R C = Δ λ FS R R Δ λ FS R S | Δ λ FS R R Δ λ FS R S | .
Δλ= λ ( i ) ( Δn n + ΔL L ),
Δ λ S = λ S( i ) Δ L S L S ,
Δ λ C = λ S(i) · Δ L S L S · Δ λ FS R R | Δ λ FS R R Δ λ FS R S | .
M= Δ λ FS R R | Δ λ FS R R Δ λ FS R S | .

Metrics