Abstract

We report what is to our knowledge the first ultrasonic imaging of seismic physical models by using a phase-shifted fiber Bragg grating (PS-FBG). Seismic models, which consist of multiple layer structures, were immersed in water. Piezoelectric (PZT) transducer was used to generate ultrasonic waves and a PS-FBG as a receiver. Two-dimensional (2D) ultrasonic images were reconstructed by scanning the PS-FBG with a high-precision position scanning device. In order to suppress the low-frequency drift of the Bragg wavelength during scanning, a tight wavelength tracking method was employed to lock the laser to the PS-FBG resonance in its reflection bandgap. The ultrasonic images captured by the PS-FBG have been compared with the images obtained by the geophysical imaging system, Sinopec, demonstrating the feasibility of our PS-FBG based imaging system in seismic modeling studies.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Buddensiek, C. M. Krawczyk, N. Kukowski, and O. Oncken, “Performance of piezoelectric transducers in terms of amplitude and waveform,” Geophysics 74(2), T33–T45 (2009).
    [CrossRef]
  2. M. Urosevic, G. Bhat, and M. H. Grochau, “Targeting nickel sulfide deposits from 3D seismic reflection data at Kambalda, Australia,” Geophysics 77(5), WC123–WC132 (2012).
    [CrossRef]
  3. B. Evans, J. McDonald, and W. French, “Seismic physical modelling of reservoirs, its past, present and future,” ASEG Extended Abstracts 2007: 19th Geophysical Conference: pp. 1–6.
    [CrossRef]
  4. J. K. Coper, D. C. Lawton, and G. F. Margrave, “The wedge model revisited: A physical modeling experiment,” Geophysics 75(2), T15–T21 (2010).
    [CrossRef]
  5. G. L. Fradelizio, A. Levander, and C. A. Zelt, “Three-dimensional seismic-reflection imaging of a shallow buried paleochannel,” Geophysics 73(5), B85–B98 (2008).
    [CrossRef]
  6. D. Sherlock, J. McKenna, and B. Evans, “Time-lapse 3-D seismic physical modelling,” Explor. Geophys. 31(2), 310–314 (2000).
    [CrossRef]
  7. A. Wandler, B. Evans, and C. Link, “AVO as a fluid indicator: A physical modeling study,” Geophysics 72(1), C9–C17 (2007).
    [CrossRef]
  8. F. Mahmoudian, G. F. Margrave, P. F. Daley, J. Wong, and E. Gallant, “Determining elastic constants of an orthorhombic material by physical seismic modeling,” Crewes Research Report 21 (2010).
  9. R. R. Stewart, N. Dyaur, B. Omoboya, J. J. S. de Figueiredo, M. Willis, and S. Sil, “Physical modeling of anisotropic domains: Ultrasonic imaging of laser-etched fractures in glass,” Geophysics 78(1), D11–D19 (2013).
    [CrossRef]
  10. H. Lamela, D. Gallego, and A. Oraevsky, “Optoacoustic imaging using fiber-optic interferometric sensors,” Opt. Lett. 34(23), 3695–3697 (2009).
    [CrossRef] [PubMed]
  11. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
    [CrossRef] [PubMed]
  12. Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
    [CrossRef] [PubMed]
  13. N. Takahashi, A. Hirose, and S. Takahashi, “Underwater Acoustic Sensor with Fiber Bragg Grating,” Opt. Rev. 4(6), 691–694 (1997).
    [CrossRef]
  14. P. Fomitchov, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng. 42(4), 956–963 (2003).
    [CrossRef]
  15. I. M. Perez, H. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).
    [CrossRef]
  16. H. Tsuda, E. Sato, T. Nakajima, H. Nakamura, T. Arakawa, H. Shiono, M. Minato, H. Kurabayashi, and A. Sato, “Acoustic emission measurement using a strain-insensitive fiber Bragg grating sensor under varying load conditions,” Opt. Lett. 34(19), 2942–2944 (2009).
    [CrossRef] [PubMed]
  17. A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
    [CrossRef] [PubMed]
  18. T. Liu and M. Han, “Analysis of π-Phase-Shifted Fiber Bragg Gratings for Ultrasonic Detection,” IEEE Sens. J. 12(7), 2368–2373 (2012).
    [CrossRef]
  19. Q. Wu, Y. Okabe, and J. Sun, “Investigation of dynamic properties of erbium fiber laser for ultrasonic sensing,” Opt. Express 22(7), 8405–8419 (2014).
    [CrossRef] [PubMed]
  20. M. A. Breazeale and J. Ford, “Ultrasonic Studies of the Nonlinear Behavior of Solids,” J. Appl. Phys. 36(11), 3486–3490 (1965).
    [CrossRef]
  21. D. M. Egle and D. E. Bray, “Measurement of acoustoelastic and third-order elastic constants for rail steel,” J. Acoust. Soc. Am. 60(3), 741–744 (1976).
    [CrossRef]

2014

2013

R. R. Stewart, N. Dyaur, B. Omoboya, J. J. S. de Figueiredo, M. Willis, and S. Sil, “Physical modeling of anisotropic domains: Ultrasonic imaging of laser-etched fractures in glass,” Geophysics 78(1), D11–D19 (2013).
[CrossRef]

2012

M. Urosevic, G. Bhat, and M. H. Grochau, “Targeting nickel sulfide deposits from 3D seismic reflection data at Kambalda, Australia,” Geophysics 77(5), WC123–WC132 (2012).
[CrossRef]

Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
[CrossRef] [PubMed]

T. Liu and M. Han, “Analysis of π-Phase-Shifted Fiber Bragg Gratings for Ultrasonic Detection,” IEEE Sens. J. 12(7), 2368–2373 (2012).
[CrossRef]

2011

2010

J. K. Coper, D. C. Lawton, and G. F. Margrave, “The wedge model revisited: A physical modeling experiment,” Geophysics 75(2), T15–T21 (2010).
[CrossRef]

2009

2008

G. L. Fradelizio, A. Levander, and C. A. Zelt, “Three-dimensional seismic-reflection imaging of a shallow buried paleochannel,” Geophysics 73(5), B85–B98 (2008).
[CrossRef]

2007

A. Wandler, B. Evans, and C. Link, “AVO as a fluid indicator: A physical modeling study,” Geophysics 72(1), C9–C17 (2007).
[CrossRef]

2005

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[CrossRef] [PubMed]

2003

P. Fomitchov, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng. 42(4), 956–963 (2003).
[CrossRef]

2001

I. M. Perez, H. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).
[CrossRef]

2000

D. Sherlock, J. McKenna, and B. Evans, “Time-lapse 3-D seismic physical modelling,” Explor. Geophys. 31(2), 310–314 (2000).
[CrossRef]

1997

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater Acoustic Sensor with Fiber Bragg Grating,” Opt. Rev. 4(6), 691–694 (1997).
[CrossRef]

1976

D. M. Egle and D. E. Bray, “Measurement of acoustoelastic and third-order elastic constants for rail steel,” J. Acoust. Soc. Am. 60(3), 741–744 (1976).
[CrossRef]

1965

M. A. Breazeale and J. Ford, “Ultrasonic Studies of the Nonlinear Behavior of Solids,” J. Appl. Phys. 36(11), 3486–3490 (1965).
[CrossRef]

Arakawa, T.

Bernini, R.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[CrossRef] [PubMed]

Bhat, G.

M. Urosevic, G. Bhat, and M. H. Grochau, “Targeting nickel sulfide deposits from 3D seismic reflection data at Kambalda, Australia,” Geophysics 77(5), WC123–WC132 (2012).
[CrossRef]

Bray, D. E.

D. M. Egle and D. E. Bray, “Measurement of acoustoelastic and third-order elastic constants for rail steel,” J. Acoust. Soc. Am. 60(3), 741–744 (1976).
[CrossRef]

Breazeale, M. A.

M. A. Breazeale and J. Ford, “Ultrasonic Studies of the Nonlinear Behavior of Solids,” J. Appl. Phys. 36(11), 3486–3490 (1965).
[CrossRef]

Buddensiek, M. L.

M. L. Buddensiek, C. M. Krawczyk, N. Kukowski, and O. Oncken, “Performance of piezoelectric transducers in terms of amplitude and waveform,” Geophysics 74(2), T33–T45 (2009).
[CrossRef]

Coper, J. K.

J. K. Coper, D. C. Lawton, and G. F. Margrave, “The wedge model revisited: A physical modeling experiment,” Geophysics 75(2), T15–T21 (2010).
[CrossRef]

Cui, H.

I. M. Perez, H. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).
[CrossRef]

Cusano, A.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[CrossRef] [PubMed]

de Figueiredo, J. J. S.

R. R. Stewart, N. Dyaur, B. Omoboya, J. J. S. de Figueiredo, M. Willis, and S. Sil, “Physical modeling of anisotropic domains: Ultrasonic imaging of laser-etched fractures in glass,” Geophysics 78(1), D11–D19 (2013).
[CrossRef]

Dyaur, N.

R. R. Stewart, N. Dyaur, B. Omoboya, J. J. S. de Figueiredo, M. Willis, and S. Sil, “Physical modeling of anisotropic domains: Ultrasonic imaging of laser-etched fractures in glass,” Geophysics 78(1), D11–D19 (2013).
[CrossRef]

Egle, D. M.

D. M. Egle and D. E. Bray, “Measurement of acoustoelastic and third-order elastic constants for rail steel,” J. Acoust. Soc. Am. 60(3), 741–744 (1976).
[CrossRef]

Evans, B.

A. Wandler, B. Evans, and C. Link, “AVO as a fluid indicator: A physical modeling study,” Geophysics 72(1), C9–C17 (2007).
[CrossRef]

D. Sherlock, J. McKenna, and B. Evans, “Time-lapse 3-D seismic physical modelling,” Explor. Geophys. 31(2), 310–314 (2000).
[CrossRef]

Fomitchov, P.

P. Fomitchov, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng. 42(4), 956–963 (2003).
[CrossRef]

Ford, J.

M. A. Breazeale and J. Ford, “Ultrasonic Studies of the Nonlinear Behavior of Solids,” J. Appl. Phys. 36(11), 3486–3490 (1965).
[CrossRef]

Fradelizio, G. L.

G. L. Fradelizio, A. Levander, and C. A. Zelt, “Three-dimensional seismic-reflection imaging of a shallow buried paleochannel,” Geophysics 73(5), B85–B98 (2008).
[CrossRef]

Gallego, D.

Giordano, M.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[CrossRef] [PubMed]

Grochau, M. H.

M. Urosevic, G. Bhat, and M. H. Grochau, “Targeting nickel sulfide deposits from 3D seismic reflection data at Kambalda, Australia,” Geophysics 77(5), WC123–WC132 (2012).
[CrossRef]

Han, M.

T. Liu and M. Han, “Analysis of π-Phase-Shifted Fiber Bragg Gratings for Ultrasonic Detection,” IEEE Sens. J. 12(7), 2368–2373 (2012).
[CrossRef]

Hirose, A.

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater Acoustic Sensor with Fiber Bragg Grating,” Opt. Rev. 4(6), 691–694 (1997).
[CrossRef]

Krawczyk, C. M.

M. L. Buddensiek, C. M. Krawczyk, N. Kukowski, and O. Oncken, “Performance of piezoelectric transducers in terms of amplitude and waveform,” Geophysics 74(2), T33–T45 (2009).
[CrossRef]

Kukowski, N.

M. L. Buddensiek, C. M. Krawczyk, N. Kukowski, and O. Oncken, “Performance of piezoelectric transducers in terms of amplitude and waveform,” Geophysics 74(2), T33–T45 (2009).
[CrossRef]

Kurabayashi, H.

Lamela, H.

Lawton, D. C.

J. K. Coper, D. C. Lawton, and G. F. Margrave, “The wedge model revisited: A physical modeling experiment,” Geophysics 75(2), T15–T21 (2010).
[CrossRef]

Levander, A.

G. L. Fradelizio, A. Levander, and C. A. Zelt, “Three-dimensional seismic-reflection imaging of a shallow buried paleochannel,” Geophysics 73(5), B85–B98 (2008).
[CrossRef]

Link, C.

A. Wandler, B. Evans, and C. Link, “AVO as a fluid indicator: A physical modeling study,” Geophysics 72(1), C9–C17 (2007).
[CrossRef]

Liu, T.

T. Liu and M. Han, “Analysis of π-Phase-Shifted Fiber Bragg Gratings for Ultrasonic Detection,” IEEE Sens. J. 12(7), 2368–2373 (2012).
[CrossRef]

Margrave, G. F.

J. K. Coper, D. C. Lawton, and G. F. Margrave, “The wedge model revisited: A physical modeling experiment,” Geophysics 75(2), T15–T21 (2010).
[CrossRef]

McKenna, J.

D. Sherlock, J. McKenna, and B. Evans, “Time-lapse 3-D seismic physical modelling,” Explor. Geophys. 31(2), 310–314 (2000).
[CrossRef]

Minardo, A.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[CrossRef] [PubMed]

Minato, M.

Nakajima, T.

Nakamura, H.

Ntziachristos, V.

Okabe, Y.

Omoboya, B.

R. R. Stewart, N. Dyaur, B. Omoboya, J. J. S. de Figueiredo, M. Willis, and S. Sil, “Physical modeling of anisotropic domains: Ultrasonic imaging of laser-etched fractures in glass,” Geophysics 78(1), D11–D19 (2013).
[CrossRef]

Oncken, O.

M. L. Buddensiek, C. M. Krawczyk, N. Kukowski, and O. Oncken, “Performance of piezoelectric transducers in terms of amplitude and waveform,” Geophysics 74(2), T33–T45 (2009).
[CrossRef]

Oraevsky, A.

Perez, I. M.

I. M. Perez, H. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).
[CrossRef]

Razansky, D.

Rosenthal, A.

Sato, A.

Sato, E.

Sherlock, D.

D. Sherlock, J. McKenna, and B. Evans, “Time-lapse 3-D seismic physical modelling,” Explor. Geophys. 31(2), 310–314 (2000).
[CrossRef]

Shiono, H.

Sil, S.

R. R. Stewart, N. Dyaur, B. Omoboya, J. J. S. de Figueiredo, M. Willis, and S. Sil, “Physical modeling of anisotropic domains: Ultrasonic imaging of laser-etched fractures in glass,” Geophysics 78(1), D11–D19 (2013).
[CrossRef]

Stewart, R. R.

R. R. Stewart, N. Dyaur, B. Omoboya, J. J. S. de Figueiredo, M. Willis, and S. Sil, “Physical modeling of anisotropic domains: Ultrasonic imaging of laser-etched fractures in glass,” Geophysics 78(1), D11–D19 (2013).
[CrossRef]

Sun, J.

Takahashi, N.

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater Acoustic Sensor with Fiber Bragg Grating,” Opt. Rev. 4(6), 691–694 (1997).
[CrossRef]

Takahashi, S.

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater Acoustic Sensor with Fiber Bragg Grating,” Opt. Rev. 4(6), 691–694 (1997).
[CrossRef]

Tsuda, H.

Udd, E.

I. M. Perez, H. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).
[CrossRef]

Urosevic, M.

M. Urosevic, G. Bhat, and M. H. Grochau, “Targeting nickel sulfide deposits from 3D seismic reflection data at Kambalda, Australia,” Geophysics 77(5), WC123–WC132 (2012).
[CrossRef]

Wandler, A.

A. Wandler, B. Evans, and C. Link, “AVO as a fluid indicator: A physical modeling study,” Geophysics 72(1), C9–C17 (2007).
[CrossRef]

Willis, M.

R. R. Stewart, N. Dyaur, B. Omoboya, J. J. S. de Figueiredo, M. Willis, and S. Sil, “Physical modeling of anisotropic domains: Ultrasonic imaging of laser-etched fractures in glass,” Geophysics 78(1), D11–D19 (2013).
[CrossRef]

Wu, Q.

Zelt, C. A.

G. L. Fradelizio, A. Levander, and C. A. Zelt, “Three-dimensional seismic-reflection imaging of a shallow buried paleochannel,” Geophysics 73(5), B85–B98 (2008).
[CrossRef]

Zeni, L.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[CrossRef] [PubMed]

Explor. Geophys.

D. Sherlock, J. McKenna, and B. Evans, “Time-lapse 3-D seismic physical modelling,” Explor. Geophys. 31(2), 310–314 (2000).
[CrossRef]

Geophysics

A. Wandler, B. Evans, and C. Link, “AVO as a fluid indicator: A physical modeling study,” Geophysics 72(1), C9–C17 (2007).
[CrossRef]

R. R. Stewart, N. Dyaur, B. Omoboya, J. J. S. de Figueiredo, M. Willis, and S. Sil, “Physical modeling of anisotropic domains: Ultrasonic imaging of laser-etched fractures in glass,” Geophysics 78(1), D11–D19 (2013).
[CrossRef]

M. L. Buddensiek, C. M. Krawczyk, N. Kukowski, and O. Oncken, “Performance of piezoelectric transducers in terms of amplitude and waveform,” Geophysics 74(2), T33–T45 (2009).
[CrossRef]

M. Urosevic, G. Bhat, and M. H. Grochau, “Targeting nickel sulfide deposits from 3D seismic reflection data at Kambalda, Australia,” Geophysics 77(5), WC123–WC132 (2012).
[CrossRef]

J. K. Coper, D. C. Lawton, and G. F. Margrave, “The wedge model revisited: A physical modeling experiment,” Geophysics 75(2), T15–T21 (2010).
[CrossRef]

G. L. Fradelizio, A. Levander, and C. A. Zelt, “Three-dimensional seismic-reflection imaging of a shallow buried paleochannel,” Geophysics 73(5), B85–B98 (2008).
[CrossRef]

IEEE Sens. J.

T. Liu and M. Han, “Analysis of π-Phase-Shifted Fiber Bragg Gratings for Ultrasonic Detection,” IEEE Sens. J. 12(7), 2368–2373 (2012).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[CrossRef] [PubMed]

J. Acoust. Soc. Am.

D. M. Egle and D. E. Bray, “Measurement of acoustoelastic and third-order elastic constants for rail steel,” J. Acoust. Soc. Am. 60(3), 741–744 (1976).
[CrossRef]

J. Appl. Phys.

M. A. Breazeale and J. Ford, “Ultrasonic Studies of the Nonlinear Behavior of Solids,” J. Appl. Phys. 36(11), 3486–3490 (1965).
[CrossRef]

Opt. Eng.

P. Fomitchov, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng. 42(4), 956–963 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater Acoustic Sensor with Fiber Bragg Grating,” Opt. Rev. 4(6), 691–694 (1997).
[CrossRef]

Proc. SPIE

I. M. Perez, H. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).
[CrossRef]

Other

F. Mahmoudian, G. F. Margrave, P. F. Daley, J. Wong, and E. Gallant, “Determining elastic constants of an orthorhombic material by physical seismic modeling,” Crewes Research Report 21 (2010).

B. Evans, J. McDonald, and W. French, “Seismic physical modelling of reservoirs, its past, present and future,” ASEG Extended Abstracts 2007: 19th Geophysical Conference: pp. 1–6.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Structure of the mobile PS-FBG probe. Ultrasonic wave is coupled to PS-FBG through the steel pole and the epoxy resin coverage layer.

Fig. 2
Fig. 2

Close-up of PS-FBG reflection dip measured by sweeping the TLS. The reflection bandwidth is 0.012 nm and the linear slope is 86 nm−1. Inset: wavelength range from 1547 nm to 1551.5 nm by linear range.

Fig. 3
Fig. 3

Schematic diagram of the proposed ultrasonic imaging system. The model is put into a water tank. The PZT actuator and PS-FBG are just located on the water surface, which is above the physical model 7.5 cm. TLS: tunable laser source, PD: photodiode, DAQ: Data Acquisition, PG: Pulse Generator. The PZT actuator and PS-FBG were controlled by a position scanning device with a spatial resolution of 0.01 cm.

Fig. 4
Fig. 4

Normalized intensity changing over time in observation for 30 minutes without ultrasound induced. Red curve: PS-FBG without wavelength tracking. Blue curve: with wavelength tracking. In the case of wavelength tracking, the half maximum point of the PS-FBG resonance was chosen as the locking position to ensure a large dynamic range in the bidirectional perturbations.

Fig. 5
Fig. 5

Temporal (a) and spectral (b) responses of the PS-FBG probe, while injecting a 200 kHz continuous sinusoidal ultrasonic wave.

Fig. 6
Fig. 6

Dependence of PS-FBG sensitivity (SNR) on frequencies from 100 to 1000 kHz.

Fig. 7
Fig. 7

Side view of the physical model made up of a rectangular and a wedge Plexiglas block. The wedge block is separated by 2 cm from the rectangular one in water.

Fig. 8
Fig. 8

Ultrasonic images of the physical model made up of a rectangular Plexiglas block and a wedge block. (a) Image reconstructed from signals of PS-FBG probe. (b) Image obtained by PZT sensor. Each channel (CHAN) corresponds to a scanning step of 0.2 cm.

Fig. 9
Fig. 9

Photograph of the elliptic cylinder Plexiglas model. The inset shows the tested structure. The elliptic block is separated by 2 cm from the rectangular one in water.

Fig. 10
Fig. 10

Ultrasonic images of the physical model made up of a rectangular Plexiglas block and an ellipse block. (a) Image reconstructed from signals of PS-FBG probe. (b) Image obtained by PZT sensor. Each channel (CHAN) corresponds to a scanning step of 0.2 cm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔP=ΔλGP

Metrics