Abstract

We demonstrate a new all-optical method to measure absorption coefficients in any family of as-grown nanowires, provided they are grown on a substrate having considerable difference in permittivity with the nanowire-air matrix. In the case of high crystal quality, strain-free GaN nanowires, grown on Si (111) substrates, the extracted absorption coefficients do not exhibit any enhancement compared to bulk GaN values, unlike relevant claims in the literature. This could be attributed to the relatively small diameters, short heights, and high densities of our nanowire arrays.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
    [CrossRef] [PubMed]
  2. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [CrossRef] [PubMed]
  3. L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
    [CrossRef]
  4. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  5. Y. Lu and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett. 10(11), 4651–4656 (2010).
    [CrossRef] [PubMed]
  6. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
    [CrossRef] [PubMed]
  7. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
    [CrossRef] [PubMed]
  8. J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
    [CrossRef] [PubMed]
  9. P. Kailuweit, M. Peters, J. Leene, K. Mergenthaler, F. Dimroth, and A. W. Bett, “Numerical simulations of absorption properties of InP nanowires for solar cell applications,” Prog. Photovolt. Res. Appl. 20(8), 945–953 (2012).
    [CrossRef]
  10. H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6(1), 617 (2011).
    [CrossRef] [PubMed]
  11. T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
    [CrossRef] [PubMed]
  12. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
    [CrossRef] [PubMed]
  13. P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
    [CrossRef]
  14. D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, “Defect-controlled growth of GaN nanorods on (0001)sapphire by molecular beam epitaxy,” Appl. Phys. Lett. 93(11), 111911 (2008).
    [CrossRef]
  15. K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999).
    [CrossRef]
  16. B. Monemar, “Bound excitons in GaN,” J. Phys. Condens. Matter 13(32), 7011–7026 (2001).
    [CrossRef]
  17. M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003).
    [CrossRef]
  18. L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).
  19. C. Pfüller, O. Brandt, F. Grosse, T. Flissikowski, C. Chèze, V. Consonni, L. Geelhaar, H. Grahn, and H. Riechert, “Unpinning the Fermi level of GaN nanowires by ultraviolet radiation,” Phys. Rev. B 82(4), 045320 (2010).
    [CrossRef]
  20. P. J. Schuck, M. D. Mason, R. D. Grober, O. Ambacher, A. P. Lima, C. Miskys, R. Dimitrov, and M. Stutzmann, “Spatially resolved photoluminescence of inversion domain boundaries in GaN-based lateral polarity heterostructures,” Appl. Phys. Lett. 79(7), 952 (2001).
    [CrossRef]
  21. P. Corfdir, P. Lefebvre, J. Ristić, P. Valvin, E. Calleja, A. Trampert, J.-D. Ganière, and B. Deveaud-Plédran, “Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates,” J. Appl. Phys. 105(1), 013113 (2009).
    [CrossRef]
  22. W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
    [CrossRef]
  23. A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
    [CrossRef]
  24. B. Gil, “Modulation spectroscopy of the Group III nitrides,” in Group III Nitride Semiconductor Compounds: Physics and Applications (Clarendon Press, 1998), pp. 158–181.
  25. J. Gomez Rivas, O. Muskens, M. T. Borgstrom, S. Diedenhofen, and E. Bakkers, “Optical Anisotropy of Semiconductor Nanowires,” in One-Dimensional Nanostructures (Springer New York, 2008), pp. 127–145.
  26. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
    [CrossRef] [PubMed]
  27. S. A. Furman and A. V. Tikhonravov, “Spectral Characteristics of Multi-Layer Coatings: Theory,” in Basics of Optics of Multilayer Systems (Atlantica Séguier Frontières, 1992), Vol. 0, pp. 1–102.
  28. M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, V. Lakshminarayanan, E. Van Stryland, and C. MacDonald, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics, Volume 4 (McGraw-Hill Prof Med/Tech, 2009), p. 1152.
  29. A. H. Sihvola and O. P. M. Pekonen, “Effective medium formulae for bi-anisotropic mixtures,” J. Phys. D Appl. Phys. 29(3), 514–521 (1996).
    [CrossRef]
  30. J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
    [CrossRef] [PubMed]
  31. J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
    [CrossRef]
  32. B. Gil, “Optical Properties and Lasing in GaN,” in Group III Nitride Semiconductor Compounds: Physics and Applications (1998), pp. 182–241.
  33. A. Armstrong, Q. Li, Y. Lin, A. A. Talin, and G. T. Wang, “GaN nanowire surface state observed using deep level optical spectroscopy,” Appl. Phys. Lett. 96(16), 163106 (2010).
    [CrossRef]
  34. R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V D Hart, T. Stoica, and H. Lüth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett. 5(5), 981–984 (2005).
    [CrossRef] [PubMed]
  35. V. N. Tuoc, T. D. Huan, and L. T. H. Lien, “Modeling study on the properties of GaN/AlN core/shell nanowires by surface effect suppression,” Phys. Status Solidi 9, 1–9 (2012).
  36. K. A. Bertness, S. Member, N. A. Sanford, and A. V. Davydov, “GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 847–858 (2011).

2013 (2)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

2012 (3)

P. Kailuweit, M. Peters, J. Leene, K. Mergenthaler, F. Dimroth, and A. W. Bett, “Numerical simulations of absorption properties of InP nanowires for solar cell applications,” Prog. Photovolt. Res. Appl. 20(8), 945–953 (2012).
[CrossRef]

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

V. N. Tuoc, T. D. Huan, and L. T. H. Lien, “Modeling study on the properties of GaN/AlN core/shell nanowires by surface effect suppression,” Phys. Status Solidi 9, 1–9 (2012).

2011 (3)

K. A. Bertness, S. Member, N. A. Sanford, and A. V. Davydov, “GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 847–858 (2011).

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6(1), 617 (2011).
[CrossRef] [PubMed]

2010 (5)

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Y. Lu and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett. 10(11), 4651–4656 (2010).
[CrossRef] [PubMed]

J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
[CrossRef] [PubMed]

C. Pfüller, O. Brandt, F. Grosse, T. Flissikowski, C. Chèze, V. Consonni, L. Geelhaar, H. Grahn, and H. Riechert, “Unpinning the Fermi level of GaN nanowires by ultraviolet radiation,” Phys. Rev. B 82(4), 045320 (2010).
[CrossRef]

A. Armstrong, Q. Li, Y. Lin, A. A. Talin, and G. T. Wang, “GaN nanowire surface state observed using deep level optical spectroscopy,” Appl. Phys. Lett. 96(16), 163106 (2010).
[CrossRef]

2009 (4)

P. Corfdir, P. Lefebvre, J. Ristić, P. Valvin, E. Calleja, A. Trampert, J.-D. Ganière, and B. Deveaud-Plédran, “Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates,” J. Appl. Phys. 105(1), 013113 (2009).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

2008 (2)

D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, “Defect-controlled growth of GaN nanorods on (0001)sapphire by molecular beam epitaxy,” Appl. Phys. Lett. 93(11), 111911 (2008).
[CrossRef]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

2007 (2)

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

2006 (1)

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
[CrossRef] [PubMed]

2005 (1)

R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V D Hart, T. Stoica, and H. Lüth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett. 5(5), 981–984 (2005).
[CrossRef] [PubMed]

2003 (1)

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003).
[CrossRef]

2001 (2)

P. J. Schuck, M. D. Mason, R. D. Grober, O. Ambacher, A. P. Lima, C. Miskys, R. Dimitrov, and M. Stutzmann, “Spatially resolved photoluminescence of inversion domain boundaries in GaN-based lateral polarity heterostructures,” Appl. Phys. Lett. 79(7), 952 (2001).
[CrossRef]

B. Monemar, “Bound excitons in GaN,” J. Phys. Condens. Matter 13(32), 7011–7026 (2001).
[CrossRef]

1999 (1)

K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999).
[CrossRef]

1998 (1)

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

1997 (2)

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[CrossRef]

1996 (1)

A. H. Sihvola and O. P. M. Pekonen, “Effective medium formulae for bi-anisotropic mixtures,” J. Phys. D Appl. Phys. 29(3), 514–521 (1996).
[CrossRef]

Aagesen, M.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Aberg, I.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Algra, R. E.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Ambacher, O.

P. J. Schuck, M. D. Mason, R. D. Grober, O. Ambacher, A. P. Lima, C. Miskys, R. Dimitrov, and M. Stutzmann, “Spatially resolved photoluminescence of inversion domain boundaries in GaN-based lateral polarity heterostructures,” Appl. Phys. Lett. 79(7), 952 (2001).
[CrossRef]

Anttu, N.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Armstrong, A.

A. Armstrong, Q. Li, Y. Lin, A. A. Talin, and G. T. Wang, “GaN nanowire surface state observed using deep level optical spectroscopy,” Appl. Phys. Lett. 96(16), 163106 (2010).
[CrossRef]

Asoli, D.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Aykanat, A. I.

R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V D Hart, T. Stoica, and H. Lüth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett. 5(5), 981–984 (2005).
[CrossRef] [PubMed]

Bakkers, E. P. A. M.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Baxter, J. B.

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
[CrossRef] [PubMed]

Bell, D. C.

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

Bertness, K. A.

K. A. Bertness, S. Member, N. A. Sanford, and A. V. Davydov, “GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 847–858 (2011).

Bett, A. W.

P. Kailuweit, M. Peters, J. Leene, K. Mergenthaler, F. Dimroth, and A. W. Bett, “Numerical simulations of absorption properties of InP nanowires for solar cell applications,” Prog. Photovolt. Res. Appl. 20(8), 945–953 (2012).
[CrossRef]

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Brandt, O.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

C. Pfüller, O. Brandt, F. Grosse, T. Flissikowski, C. Chèze, V. Consonni, L. Geelhaar, H. Grahn, and H. Riechert, “Unpinning the Fermi level of GaN nanowires by ultraviolet radiation,” Phys. Rev. B 82(4), 045320 (2010).
[CrossRef]

Bremser, M. D.

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

Brongersma, M. L.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Cahoon, J. F.

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

Calarco, R.

R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V D Hart, T. Stoica, and H. Lüth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett. 5(5), 981–984 (2005).
[CrossRef] [PubMed]

Calleja, E.

P. Corfdir, P. Lefebvre, J. Ristić, P. Valvin, E. Calleja, A. Trampert, J.-D. Ganière, and B. Deveaud-Plédran, “Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates,” J. Appl. Phys. 105(1), 013113 (2009).
[CrossRef]

Campion, R. P.

D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, “Defect-controlled growth of GaN nanorods on (0001)sapphire by molecular beam epitaxy,” Appl. Phys. Lett. 93(11), 111911 (2008).
[CrossRef]

Cao, L.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Casey, H. C.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[CrossRef]

Chalker, P. R.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

Chang, Y. C.

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

Chen, G.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Cherns, D.

D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, “Defect-controlled growth of GaN nanorods on (0001)sapphire by molecular beam epitaxy,” Appl. Phys. Lett. 93(11), 111911 (2008).
[CrossRef]

Chèze, C.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

C. Pfüller, O. Brandt, F. Grosse, T. Flissikowski, C. Chèze, V. Consonni, L. Geelhaar, H. Grahn, and H. Riechert, “Unpinning the Fermi level of GaN nanowires by ultraviolet radiation,” Phys. Rev. B 82(4), 045320 (2010).
[CrossRef]

Clemens, B. M.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Codella, P. J.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Consonni, V.

C. Pfüller, O. Brandt, F. Grosse, T. Flissikowski, C. Chèze, V. Consonni, L. Geelhaar, H. Grahn, and H. Riechert, “Unpinning the Fermi level of GaN nanowires by ultraviolet radiation,” Phys. Rev. B 82(4), 045320 (2010).
[CrossRef]

Corfdir, P.

P. Corfdir, P. Lefebvre, J. Ristić, P. Valvin, E. Calleja, A. Trampert, J.-D. Ganière, and B. Deveaud-Plédran, “Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates,” J. Appl. Phys. 105(1), 013113 (2009).
[CrossRef]

Cui, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Davis, R. F.

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

Davuluru, A.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Davydov, A. V.

K. A. Bertness, S. Member, N. A. Sanford, and A. V. Davydov, “GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 847–858 (2011).

Day, R. W.

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

Demichel, O.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

DenBaars, S. P.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[CrossRef]

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Deveaud-Plédran, B.

P. Corfdir, P. Lefebvre, J. Ristić, P. Valvin, E. Calleja, A. Trampert, J.-D. Ganière, and B. Deveaud-Plédran, “Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates,” J. Appl. Phys. 105(1), 013113 (2009).
[CrossRef]

Dimitrakopulos, G. P.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

Dimitrov, R.

P. J. Schuck, M. D. Mason, R. D. Grober, O. Ambacher, A. P. Lima, C. Miskys, R. Dimitrov, and M. Stutzmann, “Spatially resolved photoluminescence of inversion domain boundaries in GaN-based lateral polarity heterostructures,” Appl. Phys. Lett. 79(7), 952 (2001).
[CrossRef]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

P. Kailuweit, M. Peters, J. Leene, K. Mergenthaler, F. Dimroth, and A. W. Bett, “Numerical simulations of absorption properties of InP nanowires for solar cell applications,” Prog. Photovolt. Res. Appl. 20(8), 945–953 (2012).
[CrossRef]

Ebner, T.

K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999).
[CrossRef]

Fan, S.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Farley, N. R. S.

D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, “Defect-controlled growth of GaN nanorods on (0001)sapphire by molecular beam epitaxy,” Appl. Phys. Lett. 93(11), 111911 (2008).
[CrossRef]

Fischer, A. J.

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

Flissikowski, T.

C. Pfüller, O. Brandt, F. Grosse, T. Flissikowski, C. Chèze, V. Consonni, L. Geelhaar, H. Grahn, and H. Riechert, “Unpinning the Fermi level of GaN nanowires by ultraviolet radiation,” Phys. Rev. B 82(4), 045320 (2010).
[CrossRef]

Fontcuberta i Morral, A.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Forchel, A.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

Foxon, C. T.

D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, “Defect-controlled growth of GaN nanorods on (0001)sapphire by molecular beam epitaxy,” Appl. Phys. Lett. 93(11), 111911 (2008).
[CrossRef]

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Ganière, J.-D.

P. Corfdir, P. Lefebvre, J. Ristić, P. Valvin, E. Calleja, A. Trampert, J.-D. Ganière, and B. Deveaud-Plédran, “Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates,” J. Appl. Phys. 105(1), 013113 (2009).
[CrossRef]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Gass, M. H.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

Geelhaar, L.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

C. Pfüller, O. Brandt, F. Grosse, T. Flissikowski, C. Chèze, V. Consonni, L. Geelhaar, H. Grahn, and H. Riechert, “Unpinning the Fermi level of GaN nanowires by ultraviolet radiation,” Phys. Rev. B 82(4), 045320 (2010).
[CrossRef]

Goldenberg, B.

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

Grahn, H.

C. Pfüller, O. Brandt, F. Grosse, T. Flissikowski, C. Chèze, V. Consonni, L. Geelhaar, H. Grahn, and H. Riechert, “Unpinning the Fermi level of GaN nanowires by ultraviolet radiation,” Phys. Rev. B 82(4), 045320 (2010).
[CrossRef]

Grehl, M.

K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999).
[CrossRef]

Griffiths, I.

D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, “Defect-controlled growth of GaN nanorods on (0001)sapphire by molecular beam epitaxy,” Appl. Phys. Lett. 93(11), 111911 (2008).
[CrossRef]

Grober, R. D.

P. J. Schuck, M. D. Mason, R. D. Grober, O. Ambacher, A. P. Lima, C. Miskys, R. Dimitrov, and M. Stutzmann, “Spatially resolved photoluminescence of inversion domain boundaries in GaN-based lateral polarity heterostructures,” Appl. Phys. Lett. 79(7), 952 (2001).
[CrossRef]

Grosse, F.

C. Pfüller, O. Brandt, F. Grosse, T. Flissikowski, C. Chèze, V. Consonni, L. Geelhaar, H. Grahn, and H. Riechert, “Unpinning the Fermi level of GaN nanowires by ultraviolet radiation,” Phys. Rev. B 82(4), 045320 (2010).
[CrossRef]

Grzegory, I.

K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999).
[CrossRef]

Guo, H.

H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6(1), 617 (2011).
[CrossRef] [PubMed]

Hauenstein, R. J.

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

He, L.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003).
[CrossRef]

Heiss, M.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Holm, J. V.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Horning, R.

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

Hsu, C.-M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Huan, T. D.

V. N. Tuoc, T. D. Huan, and L. T. H. Lien, “Modeling study on the properties of GaN/AlN core/shell nanowires by surface effect suppression,” Phys. Status Solidi 9, 1–9 (2012).

Huang, D.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003).
[CrossRef]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Hwang, S. J.

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

Jasinski, J.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003).
[CrossRef]

Jenichen, B.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

Jørgensen, H. I.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Kailuweit, P.

P. Kailuweit, M. Peters, J. Leene, K. Mergenthaler, F. Dimroth, and A. W. Bett, “Numerical simulations of absorption properties of InP nanowires for solar cell applications,” Prog. Photovolt. Res. Appl. 20(8), 945–953 (2012).
[CrossRef]

Kamp, M.

K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999).
[CrossRef]

Karakostas, T.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

Kehagias, T.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

Keller, B. P.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[CrossRef]

Kempa, T. J.

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

Khongphetsak, S.

D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, “Defect-controlled growth of GaN nanorods on (0001)sapphire by molecular beam epitaxy,” Appl. Phys. Lett. 93(11), 111911 (2008).
[CrossRef]

Kim, D. S.

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

Kim, S.-K.

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

Kirchner, C.

K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999).
[CrossRef]

Kolbas, R. M.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[CrossRef]

Komninou, P.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

Korevaar, B. A.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Kornitzer, K.

K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999).
[CrossRef]

Krishnankutty, S.

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

Krogstrup, P.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Kupec, J.

Lagendijk, A.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Lal, A.

Y. Lu and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett. 10(11), 4651–4656 (2010).
[CrossRef] [PubMed]

Lari, L.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

LeBoeuf, S. F.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Lee, J. H.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[CrossRef]

Lee, K. Y.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003).
[CrossRef]

Leene, J.

P. Kailuweit, M. Peters, J. Leene, K. Mergenthaler, F. Dimroth, and A. W. Bett, “Numerical simulations of absorption properties of InP nanowires for solar cell applications,” Prog. Photovolt. Res. Appl. 20(8), 945–953 (2012).
[CrossRef]

Lefebvre, P.

P. Corfdir, P. Lefebvre, J. Ristić, P. Valvin, E. Calleja, A. Trampert, J.-D. Ganière, and B. Deveaud-Plédran, “Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates,” J. Appl. Phys. 105(1), 013113 (2009).
[CrossRef]

Leszczynski, M.

K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999).
[CrossRef]

Li, Q.

A. Armstrong, Q. Li, Y. Lin, A. A. Talin, and G. T. Wang, “GaN nanowire surface state observed using deep level optical spectroscopy,” Appl. Phys. Lett. 96(16), 163106 (2010).
[CrossRef]

Li, X.

H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6(1), 617 (2011).
[CrossRef] [PubMed]

Lieber, C. M.

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

Lien, L. T. H.

V. N. Tuoc, T. D. Huan, and L. T. H. Lien, “Modeling study on the properties of GaN/AlN core/shell nanowires by surface effect suppression,” Phys. Status Solidi 9, 1–9 (2012).

Liliental-Weber, Z.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003).
[CrossRef]

Lima, A. P.

P. J. Schuck, M. D. Mason, R. D. Grober, O. Ambacher, A. P. Lima, C. Miskys, R. Dimitrov, and M. Stutzmann, “Spatially resolved photoluminescence of inversion domain boundaries in GaN-based lateral polarity heterostructures,” Appl. Phys. Lett. 79(7), 952 (2001).
[CrossRef]

Lin, C.

Lin, Y.

A. Armstrong, Q. Li, Y. Lin, A. A. Talin, and G. T. Wang, “GaN nanowire surface state observed using deep level optical spectroscopy,” Appl. Phys. Lett. 96(16), 163106 (2010).
[CrossRef]

Little, B. D.

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

Lu, Y.

Y. Lu and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett. 10(11), 4651–4656 (2010).
[CrossRef] [PubMed]

Lüth, H.

R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V D Hart, T. Stoica, and H. Lüth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett. 5(5), 981–984 (2005).
[CrossRef] [PubMed]

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Marso, M.

R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V D Hart, T. Stoica, and H. Lüth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett. 5(5), 981–984 (2005).
[CrossRef] [PubMed]

Mason, M. D.

P. J. Schuck, M. D. Mason, R. D. Grober, O. Ambacher, A. P. Lima, C. Miskys, R. Dimitrov, and M. Stutzmann, “Spatially resolved photoluminescence of inversion domain boundaries in GaN-based lateral polarity heterostructures,” Appl. Phys. Lett. 79(7), 952 (2001).
[CrossRef]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Meijers, R.

R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V D Hart, T. Stoica, and H. Lüth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett. 5(5), 981–984 (2005).
[CrossRef] [PubMed]

Member, S.

K. A. Bertness, S. Member, N. A. Sanford, and A. V. Davydov, “GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 847–858 (2011).

Mergenthaler, K.

P. Kailuweit, M. Peters, J. Leene, K. Mergenthaler, F. Dimroth, and A. W. Bett, “Numerical simulations of absorption properties of InP nanowires for solar cell applications,” Prog. Photovolt. Res. Appl. 20(8), 945–953 (2012).
[CrossRef]

Meshi, L.

D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, “Defect-controlled growth of GaN nanorods on (0001)sapphire by molecular beam epitaxy,” Appl. Phys. Lett. 93(11), 111911 (2008).
[CrossRef]

Mishra, U. K.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[CrossRef]

Miskys, C.

P. J. Schuck, M. D. Mason, R. D. Grober, O. Ambacher, A. P. Lima, C. Miskys, R. Dimitrov, and M. Stutzmann, “Spatially resolved photoluminescence of inversion domain boundaries in GaN-based lateral polarity heterostructures,” Appl. Phys. Lett. 79(7), 952 (2001).
[CrossRef]

Molnar, R. J.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003).
[CrossRef]

Monemar, B.

B. Monemar, “Bound excitons in GaN,” J. Phys. Condens. Matter 13(32), 7011–7026 (2001).
[CrossRef]

Morkoç, H.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003).
[CrossRef]

Muskens, O. L.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Muth, J. F.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[CrossRef]

Novikov, S. V.

D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, “Defect-controlled growth of GaN nanorods on (0001)sapphire by molecular beam epitaxy,” Appl. Phys. Lett. 93(11), 111911 (2008).
[CrossRef]

Nygard, J.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Park, H.-G.

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

Park, J.-S.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Park, S. S.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003).
[CrossRef]

Pekonen, O. P. M.

A. H. Sihvola and O. P. M. Pekonen, “Effective medium formulae for bi-anisotropic mixtures,” J. Phys. D Appl. Phys. 29(3), 514–521 (1996).
[CrossRef]

Perry, W. G.

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

Peters, M.

P. Kailuweit, M. Peters, J. Leene, K. Mergenthaler, F. Dimroth, and A. W. Bett, “Numerical simulations of absorption properties of InP nanowires for solar cell applications,” Prog. Photovolt. Res. Appl. 20(8), 945–953 (2012).
[CrossRef]

Pfüller, C.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

C. Pfüller, O. Brandt, F. Grosse, T. Flissikowski, C. Chèze, V. Consonni, L. Geelhaar, H. Grahn, and H. Riechert, “Unpinning the Fermi level of GaN nanowires by ultraviolet radiation,” Phys. Rev. B 82(4), 045320 (2010).
[CrossRef]

Pietrzykowski, M.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Porowski, S.

K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999).
[CrossRef]

Povinelli, M. L.

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Rapol, U.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Reitzenstein, S.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

Reshchikov, M. A.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003).
[CrossRef]

Richter, T.

R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V D Hart, T. Stoica, and H. Lüth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett. 5(5), 981–984 (2005).
[CrossRef] [PubMed]

Riechert, H.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

C. Pfüller, O. Brandt, F. Grosse, T. Flissikowski, C. Chèze, V. Consonni, L. Geelhaar, H. Grahn, and H. Riechert, “Unpinning the Fermi level of GaN nanowires by ultraviolet radiation,” Phys. Rev. B 82(4), 045320 (2010).
[CrossRef]

Ristic, J.

P. Corfdir, P. Lefebvre, J. Ristić, P. Valvin, E. Calleja, A. Trampert, J.-D. Ganière, and B. Deveaud-Plédran, “Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates,” J. Appl. Phys. 105(1), 013113 (2009).
[CrossRef]

Rivas, J. G.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Rothemund, R.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

Samuelson, L.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Sanford, N. A.

K. A. Bertness, S. Member, N. A. Sanford, and A. V. Davydov, “GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 847–858 (2011).

Sauer, R.

K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999).
[CrossRef]

Schmuttenmaer, C. A.

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
[CrossRef] [PubMed]

Schuck, P. J.

P. J. Schuck, M. D. Mason, R. D. Grober, O. Ambacher, A. P. Lima, C. Miskys, R. Dimitrov, and M. Stutzmann, “Spatially resolved photoluminescence of inversion domain boundaries in GaN-based lateral polarity heterostructures,” Appl. Phys. Lett. 79(7), 952 (2001).
[CrossRef]

Schuller, J. A.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Schwegler, V.

K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999).
[CrossRef]

Shan, W.

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

Shih, M.-Y.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Shmagin, I. K.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[CrossRef]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Sihvola, A. H.

A. H. Sihvola and O. P. M. Pekonen, “Effective medium formulae for bi-anisotropic mixtures,” J. Phys. D Appl. Phys. 29(3), 514–521 (1996).
[CrossRef]

Song, J. J.

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

Steffen, M.

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

Stoica, T.

R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V D Hart, T. Stoica, and H. Lüth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett. 5(5), 981–984 (2005).
[CrossRef] [PubMed]

Stoop, R. L.

Stutzmann, M.

P. J. Schuck, M. D. Mason, R. D. Grober, O. Ambacher, A. P. Lima, C. Miskys, R. Dimitrov, and M. Stutzmann, “Spatially resolved photoluminescence of inversion domain boundaries in GaN-based lateral polarity heterostructures,” Appl. Phys. Lett. 79(7), 952 (2001).
[CrossRef]

Sulima, O. V.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Talin, A. A.

A. Armstrong, Q. Li, Y. Lin, A. A. Talin, and G. T. Wang, “GaN nanowire surface state observed using deep level optical spectroscopy,” Appl. Phys. Lett. 96(16), 163106 (2010).
[CrossRef]

Thonke, K.

K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999).
[CrossRef]

Trampert, A.

P. Corfdir, P. Lefebvre, J. Ristić, P. Valvin, E. Calleja, A. Trampert, J.-D. Ganière, and B. Deveaud-Plédran, “Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates,” J. Appl. Phys. 105(1), 013113 (2009).
[CrossRef]

Tsakalakos, L.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Tuoc, V. N.

V. N. Tuoc, T. D. Huan, and L. T. H. Lien, “Modeling study on the properties of GaN/AlN core/shell nanowires by surface effect suppression,” Phys. Status Solidi 9, 1–9 (2012).

V D Hart, A.

R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V D Hart, T. Stoica, and H. Lüth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett. 5(5), 981–984 (2005).
[CrossRef] [PubMed]

Valvin, P.

P. Corfdir, P. Lefebvre, J. Ristić, P. Valvin, E. Calleja, A. Trampert, J.-D. Ganière, and B. Deveaud-Plédran, “Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates,” J. Appl. Phys. 105(1), 013113 (2009).
[CrossRef]

Visconti, P.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003).
[CrossRef]

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Wang, G. T.

A. Armstrong, Q. Li, Y. Lin, A. A. Talin, and G. T. Wang, “GaN nanowire surface state observed using deep level optical spectroscopy,” Appl. Phys. Lett. 96(16), 163106 (2010).
[CrossRef]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Wang, Y.

H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6(1), 617 (2011).
[CrossRef] [PubMed]

Wen, L.

H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6(1), 617 (2011).
[CrossRef] [PubMed]

White, J. S.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
[CrossRef] [PubMed]

Xie, X. C.

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Yu, Z.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Yun, F.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003).
[CrossRef]

Zhao, Z.

H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6(1), 617 (2011).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, “Defect-controlled growth of GaN nanorods on (0001)sapphire by molecular beam epitaxy,” Appl. Phys. Lett. 93(11), 111911 (2008).
[CrossRef]

P. J. Schuck, M. D. Mason, R. D. Grober, O. Ambacher, A. P. Lima, C. Miskys, R. Dimitrov, and M. Stutzmann, “Spatially resolved photoluminescence of inversion domain boundaries in GaN-based lateral polarity heterostructures,” Appl. Phys. Lett. 79(7), 952 (2001).
[CrossRef]

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[CrossRef]

A. Armstrong, Q. Li, Y. Lin, A. A. Talin, and G. T. Wang, “GaN nanowire surface state observed using deep level optical spectroscopy,” Appl. Phys. Lett. 96(16), 163106 (2010).
[CrossRef]

J. Appl. Phys. (3)

P. Corfdir, P. Lefebvre, J. Ristić, P. Valvin, E. Calleja, A. Trampert, J.-D. Ganière, and B. Deveaud-Plédran, “Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates,” J. Appl. Phys. 105(1), 013113 (2009).
[CrossRef]

W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998).
[CrossRef]

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003).
[CrossRef]

J. Nanophotonics (1)

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

J. Phys. Chem. B (1)

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
[CrossRef] [PubMed]

J. Phys. Condens. Matter (1)

B. Monemar, “Bound excitons in GaN,” J. Phys. Condens. Matter 13(32), 7011–7026 (2001).
[CrossRef]

J. Phys. D Appl. Phys. (1)

A. H. Sihvola and O. P. M. Pekonen, “Effective medium formulae for bi-anisotropic mixtures,” J. Phys. D Appl. Phys. 29(3), 514–521 (1996).
[CrossRef]

Nano Lett. (6)

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V D Hart, T. Stoica, and H. Lüth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett. 5(5), 981–984 (2005).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Y. Lu and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett. 10(11), 4651–4656 (2010).
[CrossRef] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6(1), 617 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

C. Pfüller, O. Brandt, F. Grosse, T. Flissikowski, C. Chèze, V. Consonni, L. Geelhaar, H. Grahn, and H. Riechert, “Unpinning the Fermi level of GaN nanowires by ultraviolet radiation,” Phys. Rev. B 82(4), 045320 (2010).
[CrossRef]

Phys. Status Solidi (2)

V. N. Tuoc, T. D. Huan, and L. T. H. Lien, “Modeling study on the properties of GaN/AlN core/shell nanowires by surface effect suppression,” Phys. Status Solidi 9, 1–9 (2012).

K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (1)

P. Kailuweit, M. Peters, J. Leene, K. Mergenthaler, F. Dimroth, and A. W. Bett, “Numerical simulations of absorption properties of InP nanowires for solar cell applications,” Prog. Photovolt. Res. Appl. 20(8), 945–953 (2012).
[CrossRef]

Quantum (2)

L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).

K. A. Bertness, S. Member, N. A. Sanford, and A. V. Davydov, “GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 847–858 (2011).

Science (1)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[CrossRef] [PubMed]

Other (5)

B. Gil, “Optical Properties and Lasing in GaN,” in Group III Nitride Semiconductor Compounds: Physics and Applications (1998), pp. 182–241.

S. A. Furman and A. V. Tikhonravov, “Spectral Characteristics of Multi-Layer Coatings: Theory,” in Basics of Optics of Multilayer Systems (Atlantica Séguier Frontières, 1992), Vol. 0, pp. 1–102.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, V. Lakshminarayanan, E. Van Stryland, and C. MacDonald, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics, Volume 4 (McGraw-Hill Prof Med/Tech, 2009), p. 1152.

B. Gil, “Modulation spectroscopy of the Group III nitrides,” in Group III Nitride Semiconductor Compounds: Physics and Applications (Clarendon Press, 1998), pp. 158–181.

J. Gomez Rivas, O. Muskens, M. T. Borgstrom, S. Diedenhofen, and E. Bakkers, “Optical Anisotropy of Semiconductor Nanowires,” in One-Dimensional Nanostructures (Springer New York, 2008), pp. 127–145.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) SEM top view and (b) SEM lateral view of GaN (0001) nanowires on Si (111).

Fig. 2
Fig. 2

(a) Comparison of PL (blue) and RFL (red) from GaN NWs at LT, (b) Comparison of PL (blue) and RFL (red) from GaN NWs at RT, (c) Polarization-resolved RFL at a large angle of incidence of 65°, demonstrating polarization dependence of the excitons, by varying the polarizer angle from 0 to 90°, (d) Wide range RFL spectrum of GaN NWs showing transmission-like characteristics.

Fig. 3
Fig. 3

(a) Different integrating sphere configurations to measure the total and diffuse reflectivity in setup 2. (b) Total (red), specular (blue) and diffuse (black) reflectivity spectra obtained from the GaN NW sample, at room temperature.

Fig. 4
Fig. 4

Simulation of the total RFL spectrum of (a) a GaN/Si thin film, and (b) of GaN NWs grown on Si, where black line corresponds to experimental and red line to simulation data. (c) Deduced power reflectivities from the simulation, at different interfaces of the GaN NW array, such as top (blue), middle (green) and bottom interface (purple). (d) An illustrative diagram showing the power reflectivities from the different GaN NW interfaces.

Fig. 5
Fig. 5

(a) Absorption spectra from GaN NWs with varying temperature between 25K and 295K. (b) Low and room temperature absorption spectra, emphasizing the exciton absorption lines, along with the phonon assisted absorption peak.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f( ε n ε ε n +Kε )+(1f).( ε m ε ε m +Kε )=0
R= ( nn' n+n' ) 2
I= I 0 . (1 D s ) 2 . R 0 . e (α+ D v )d
F= h 1 + h 2 h 1 f 1 + h 2 f 2
α corrected = α experimental ×F

Metrics