Abstract

We introduced fractal geometry to the conventional bowtie antennas. We experimentally and numerically showed that the resonance of the bowtie antennas goes to longer wavelengths, after each fractalization step, which is considered a tool to miniaturize the main bowtie structure. We also showed that the fractal geometry provides multiple hot spots on the surface, and it can be used as an efficient SERS substrate.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [CrossRef]
  2. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
    [CrossRef] [PubMed]
  3. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [CrossRef] [PubMed]
  4. L. Wang and X. F. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
    [CrossRef]
  5. N. K. Emani, T. F. Chung, X. J. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
    [CrossRef] [PubMed]
  6. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
    [CrossRef] [PubMed]
  7. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
    [CrossRef] [PubMed]
  8. K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-From single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
    [CrossRef] [PubMed]
  9. H. Kneipp, J. Kneipp, and K. Kneipp, “Surface-enhanced Raman optical activity on adenine in silver colloidal solution,” Anal. Chem. 78(4), 1363–1366 (2006).
    [CrossRef] [PubMed]
  10. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
    [CrossRef]
  11. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [CrossRef]
  12. M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sensor Actuat. Biol. Chem. 51, 285–291 (1998).
  13. N. Guillot, H. Shen, B. Fremaux, O. Peron, E. Rinnert, T. Toury, and M. L. de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97(2), 023113 (2010).
    [CrossRef]
  14. N. A. Cinel, S. Cakmakyapan, G. Ertas, and E. Ozbay, “Concentric ring structures as efficient SERS substrates,” IEEE JSTQE 19, 4601605 (2013).
  15. N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
    [CrossRef] [PubMed]
  16. A. R. M. D. H. Werner, Frontiers in Electromagnetics (Wiley, 1999).
  17. B. B. Mandelbrot and A. Blumen, “Fractal geometry - what is it, and what does it do,” P. Roy. Soc. Lond. A. Mat. 423(1864), 3–16 (1989).
    [CrossRef]
  18. J. H. Zhu, A. Hoorfar, and N. Engheta, “Bandwidth, cross-polarization, and feed-point characteristics of matched Hilbert antennas,” IEEE Antenna Wireless Proceedings 2(1), 2–5 (2003).
    [CrossRef]
  19. V. Crnojevic-Bengin, V. Radonic, and B. Jokanovic, “Fractal geometries of complementary split-ring resonators,” IEEE T. Microwave Theory 56(10), 2312–2321 (2008).
    [CrossRef]
  20. D. H. Werner and S. Ganguly, “An overview of fractal antenna engineering research,” IEEE Antennas Propag. 45(1), 38–57 (2003).
    [CrossRef]
  21. G. Volpe, G. Volpe, and R. Quidant, “Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet,” Opt. Express 19(4), 3612–3618 (2011).
    [CrossRef] [PubMed]
  22. S. Sederberg and A. Y. Elezzabi, “Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna,” Opt. Express 19(11), 10456–10461 (2011).
    [CrossRef] [PubMed]
  23. S. Sederberg and A. Y. Elezzabi, “The influence of Hausdorff dimension on plasmonic antennas with Pascal's triangle geometry,” Appl. Phys. Lett. 98(26), 261105 (2011).
    [CrossRef]
  24. P. Maraghechi and A. Y. Elezzabi, “Enhanced THz radiation emission from plasmonic complementary Sierpinski fractal emitters,” Opt. Express 18(26), 27336–27345 (2010).
    [CrossRef] [PubMed]
  25. L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi-R 5(5-6), 175–177 (2011).
    [CrossRef]
  26. A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys-Usp 56(6), 539–564 (2013).
    [CrossRef]
  27. J. S. Dahele and K. F. Lee, “On the resonant frequencies of the triangular patch antenna,” IEEE Trans. Antenn. Propag. 35(1), 100–101 (1987).
    [CrossRef]
  28. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [CrossRef] [PubMed]
  29. J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
    [CrossRef]
  30. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
    [CrossRef] [PubMed]
  31. E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
    [CrossRef] [PubMed]
  32. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  33. N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: The reason for red shifts,” Nano Lett. 11(5), 2079–2082 (2011).
    [CrossRef] [PubMed]
  34. K. D. Alexander, K. Skinner, S. P. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10(11), 4488–4493 (2010).
    [CrossRef] [PubMed]
  35. S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
    [CrossRef] [PubMed]
  36. S. M. Asiala and Z. D. Schultz, “Characterization of hotspots in a highly enhancing SERS substrate,” Analyst (Lond.) 136(21), 4472–4479 (2011).
    [CrossRef] [PubMed]
  37. K. H. Hsu, J. H. Back, K. H. Fung, P. M. Ferreira, M. Shim, and N. X. Fang, “SERS EM field enhancement study through fast Raman mapping of Sierpinski carpet arrays,” J. Raman Spectroscopy 41(10), 1124–1130 (2010).
    [CrossRef]

2013 (3)

N. A. Cinel, S. Cakmakyapan, G. Ertas, and E. Ozbay, “Concentric ring structures as efficient SERS substrates,” IEEE JSTQE 19, 4601605 (2013).

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[CrossRef] [PubMed]

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys-Usp 56(6), 539–564 (2013).
[CrossRef]

2012 (2)

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[CrossRef] [PubMed]

N. K. Emani, T. F. Chung, X. J. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[CrossRef] [PubMed]

2011 (6)

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi-R 5(5-6), 175–177 (2011).
[CrossRef]

N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: The reason for red shifts,” Nano Lett. 11(5), 2079–2082 (2011).
[CrossRef] [PubMed]

S. M. Asiala and Z. D. Schultz, “Characterization of hotspots in a highly enhancing SERS substrate,” Analyst (Lond.) 136(21), 4472–4479 (2011).
[CrossRef] [PubMed]

S. Sederberg and A. Y. Elezzabi, “The influence of Hausdorff dimension on plasmonic antennas with Pascal's triangle geometry,” Appl. Phys. Lett. 98(26), 261105 (2011).
[CrossRef]

G. Volpe, G. Volpe, and R. Quidant, “Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet,” Opt. Express 19(4), 3612–3618 (2011).
[CrossRef] [PubMed]

S. Sederberg and A. Y. Elezzabi, “Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna,” Opt. Express 19(11), 10456–10461 (2011).
[CrossRef] [PubMed]

2010 (5)

P. Maraghechi and A. Y. Elezzabi, “Enhanced THz radiation emission from plasmonic complementary Sierpinski fractal emitters,” Opt. Express 18(26), 27336–27345 (2010).
[CrossRef] [PubMed]

K. H. Hsu, J. H. Back, K. H. Fung, P. M. Ferreira, M. Shim, and N. X. Fang, “SERS EM field enhancement study through fast Raman mapping of Sierpinski carpet arrays,” J. Raman Spectroscopy 41(10), 1124–1130 (2010).
[CrossRef]

K. D. Alexander, K. Skinner, S. P. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10(11), 4488–4493 (2010).
[CrossRef] [PubMed]

N. Guillot, H. Shen, B. Fremaux, O. Peron, E. Rinnert, T. Toury, and M. L. de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97(2), 023113 (2010).
[CrossRef]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

2009 (1)

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

2008 (2)

V. Crnojevic-Bengin, V. Radonic, and B. Jokanovic, “Fractal geometries of complementary split-ring resonators,” IEEE T. Microwave Theory 56(10), 2312–2321 (2008).
[CrossRef]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

2007 (3)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
[CrossRef] [PubMed]

L. Wang and X. F. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[CrossRef]

2006 (4)

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-From single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[CrossRef] [PubMed]

H. Kneipp, J. Kneipp, and K. Kneipp, “Surface-enhanced Raman optical activity on adenine in silver colloidal solution,” Anal. Chem. 78(4), 1363–1366 (2006).
[CrossRef] [PubMed]

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[CrossRef] [PubMed]

2005 (2)

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

2003 (3)

D. H. Werner and S. Ganguly, “An overview of fractal antenna engineering research,” IEEE Antennas Propag. 45(1), 38–57 (2003).
[CrossRef]

J. H. Zhu, A. Hoorfar, and N. Engheta, “Bandwidth, cross-polarization, and feed-point characteristics of matched Hilbert antennas,” IEEE Antenna Wireless Proceedings 2(1), 2–5 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

2001 (1)

J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
[CrossRef]

1998 (1)

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sensor Actuat. Biol. Chem. 51, 285–291 (1998).

1989 (1)

B. B. Mandelbrot and A. Blumen, “Fractal geometry - what is it, and what does it do,” P. Roy. Soc. Lond. A. Mat. 423(1864), 3–16 (1989).
[CrossRef]

1987 (1)

J. S. Dahele and K. F. Lee, “On the resonant frequencies of the triangular patch antenna,” IEEE Trans. Antenn. Propag. 35(1), 100–101 (1987).
[CrossRef]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Aizpurua, J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

Alexander, K. D.

K. D. Alexander, K. Skinner, S. P. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10(11), 4488–4493 (2010).
[CrossRef] [PubMed]

Anguera, J.

J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
[CrossRef]

Asiala, S. M.

S. M. Asiala and Z. D. Schultz, “Characterization of hotspots in a highly enhancing SERS substrate,” Analyst (Lond.) 136(21), 4472–4479 (2011).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Back, J. H.

K. H. Hsu, J. H. Back, K. H. Fung, P. M. Ferreira, M. Shim, and N. X. Fang, “SERS EM field enhancement study through fast Raman mapping of Sierpinski carpet arrays,” J. Raman Spectroscopy 41(10), 1124–1130 (2010).
[CrossRef]

Belov, P. A.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys-Usp 56(6), 539–564 (2013).
[CrossRef]

Berkovitch, N.

N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: The reason for red shifts,” Nano Lett. 11(5), 2079–2082 (2011).
[CrossRef] [PubMed]

Blumen, A.

B. B. Mandelbrot and A. Blumen, “Fractal geometry - what is it, and what does it do,” P. Roy. Soc. Lond. A. Mat. 423(1864), 3–16 (1989).
[CrossRef]

Boltasseva, A.

N. K. Emani, T. F. Chung, X. J. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[CrossRef] [PubMed]

Borja, C.

J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
[CrossRef]

Bryant, G. W.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

Bütün, S.

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[CrossRef] [PubMed]

Cakmakyapan, S.

N. A. Cinel, S. Cakmakyapan, G. Ertas, and E. Ozbay, “Concentric ring structures as efficient SERS substrates,” IEEE JSTQE 19, 4601605 (2013).

Capasso, F.

Chen, Y. P.

N. K. Emani, T. F. Chung, X. J. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[CrossRef] [PubMed]

Chow, E. K.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[CrossRef] [PubMed]

Chung, T. F.

N. K. Emani, T. F. Chung, X. J. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[CrossRef] [PubMed]

Cinel, N. A.

N. A. Cinel, S. Cakmakyapan, G. Ertas, and E. Ozbay, “Concentric ring structures as efficient SERS substrates,” IEEE JSTQE 19, 4601605 (2013).

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[CrossRef] [PubMed]

Crnojevic-Bengin, V.

V. Crnojevic-Bengin, V. Radonic, and B. Jokanovic, “Fractal geometries of complementary split-ring resonators,” IEEE T. Microwave Theory 56(10), 2312–2321 (2008).
[CrossRef]

Cubukcu, E.

Dahele, J. S.

J. S. Dahele and K. F. Lee, “On the resonant frequencies of the triangular patch antenna,” IEEE Trans. Antenn. Propag. 35(1), 100–101 (1987).
[CrossRef]

de la Chapelle, M. L.

N. Guillot, H. Shen, B. Fremaux, O. Peron, E. Rinnert, T. Toury, and M. L. de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97(2), 023113 (2010).
[CrossRef]

Denisyuk, A. I.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys-Usp 56(6), 539–564 (2013).
[CrossRef]

Elezzabi, A. Y.

Emani, N. K.

N. K. Emani, T. F. Chung, X. J. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[CrossRef] [PubMed]

Engheta, N.

J. H. Zhu, A. Hoorfar, and N. Engheta, “Bandwidth, cross-polarization, and feed-point characteristics of matched Hilbert antennas,” IEEE Antenna Wireless Proceedings 2(1), 2–5 (2003).
[CrossRef]

Eres, G.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Ertas, G.

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[CrossRef] [PubMed]

N. A. Cinel, S. Cakmakyapan, G. Ertas, and E. Ozbay, “Concentric ring structures as efficient SERS substrates,” IEEE JSTQE 19, 4601605 (2013).

Fan, S. H.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Fang, N. X.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[CrossRef] [PubMed]

K. H. Hsu, J. H. Back, K. H. Fung, P. M. Ferreira, M. Shim, and N. X. Fang, “SERS EM field enhancement study through fast Raman mapping of Sierpinski carpet arrays,” J. Raman Spectroscopy 41(10), 1124–1130 (2010).
[CrossRef]

Ferreira, P. M.

K. H. Hsu, J. H. Back, K. H. Fung, P. M. Ferreira, M. Shim, and N. X. Fang, “SERS EM field enhancement study through fast Raman mapping of Sierpinski carpet arrays,” J. Raman Spectroscopy 41(10), 1124–1130 (2010).
[CrossRef]

Fremaux, B.

N. Guillot, H. Shen, B. Fremaux, O. Peron, E. Rinnert, T. Toury, and M. L. de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97(2), 023113 (2010).
[CrossRef]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Fung, K. H.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[CrossRef] [PubMed]

K. H. Hsu, J. H. Back, K. H. Fung, P. M. Ferreira, M. Shim, and N. X. Fang, “SERS EM field enhancement study through fast Raman mapping of Sierpinski carpet arrays,” J. Raman Spectroscopy 41(10), 1124–1130 (2010).
[CrossRef]

Gaddis, A. L.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Ganguly, S.

D. H. Werner and S. Ganguly, “An overview of fractal antenna engineering research,” IEEE Antennas Propag. 45(1), 38–57 (2003).
[CrossRef]

García de Abajo, F. J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

Gu, B.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Guillot, N.

N. Guillot, H. Shen, B. Fremaux, O. Peron, E. Rinnert, T. Toury, and M. L. de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97(2), 023113 (2010).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hatab, N. A.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[CrossRef]

Hill, W.

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sensor Actuat. Biol. Chem. 51, 285–291 (1998).

Hoorfar, A.

J. H. Zhu, A. Hoorfar, and N. Engheta, “Bandwidth, cross-polarization, and feed-point characteristics of matched Hilbert antennas,” IEEE Antenna Wireless Proceedings 2(1), 2–5 (2003).
[CrossRef]

Hsu, K. H.

K. H. Hsu, J. H. Back, K. H. Fung, P. M. Ferreira, M. Shim, and N. X. Fang, “SERS EM field enhancement study through fast Raman mapping of Sierpinski carpet arrays,” J. Raman Spectroscopy 41(10), 1124–1130 (2010).
[CrossRef]

Hsueh, C. H.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Jokanovic, B.

V. Crnojevic-Bengin, V. Radonic, and B. Jokanovic, “Fractal geometries of complementary split-ring resonators,” IEEE T. Microwave Theory 56(10), 2312–2321 (2008).
[CrossRef]

Juodkazis, S.

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi-R 5(5-6), 175–177 (2011).
[CrossRef]

Kahl, M.

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sensor Actuat. Biol. Chem. 51, 285–291 (1998).

Kildishev, A. V.

N. K. Emani, T. F. Chung, X. J. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

Kino, G. S.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys-Usp 56(6), 539–564 (2013).
[CrossRef]

Kneipp, H.

H. Kneipp, J. Kneipp, and K. Kneipp, “Surface-enhanced Raman optical activity on adenine in silver colloidal solution,” Anal. Chem. 78(4), 1363–1366 (2006).
[CrossRef] [PubMed]

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-From single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[CrossRef] [PubMed]

Kneipp, J.

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-From single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[CrossRef] [PubMed]

H. Kneipp, J. Kneipp, and K. Kneipp, “Surface-enhanced Raman optical activity on adenine in silver colloidal solution,” Anal. Chem. 78(4), 1363–1366 (2006).
[CrossRef] [PubMed]

Kneipp, K.

H. Kneipp, J. Kneipp, and K. Kneipp, “Surface-enhanced Raman optical activity on adenine in silver colloidal solution,” Anal. Chem. 78(4), 1363–1366 (2006).
[CrossRef] [PubMed]

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-From single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[CrossRef] [PubMed]

Ko, K. D.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[CrossRef] [PubMed]

Kostrewa, S.

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sensor Actuat. Biol. Chem. 51, 285–291 (1998).

Krasnok, A. E.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys-Usp 56(6), 539–564 (2013).
[CrossRef]

Kumar, A.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[CrossRef] [PubMed]

Lee, K. F.

J. S. Dahele and K. F. Lee, “On the resonant frequencies of the triangular patch antenna,” IEEE Trans. Antenn. Propag. 35(1), 100–101 (1987).
[CrossRef]

Lee, S. J.

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[CrossRef] [PubMed]

Li, J. H.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Liu, G. L.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[CrossRef] [PubMed]

Lopez, R.

K. D. Alexander, K. Skinner, S. P. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10(11), 4488–4493 (2010).
[CrossRef] [PubMed]

Maksymov, I. S.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys-Usp 56(6), 539–564 (2013).
[CrossRef]

Mandelbrot, B. B.

B. B. Mandelbrot and A. Blumen, “Fractal geometry - what is it, and what does it do,” P. Roy. Soc. Lond. A. Mat. 423(1864), 3–16 (1989).
[CrossRef]

Maraghechi, P.

McFarland, A. D.

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[CrossRef]

Miroshnichenko, A. E.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys-Usp 56(6), 539–564 (2013).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Montero, R.

J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
[CrossRef]

Morrill, A. R.

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[CrossRef] [PubMed]

Moskovits, M.

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[CrossRef] [PubMed]

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Mullen, K.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Ni, X. J.

N. K. Emani, T. F. Chung, X. J. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[CrossRef] [PubMed]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

Orenstein, M.

N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: The reason for red shifts,” Nano Lett. 11(5), 2079–2082 (2011).
[CrossRef] [PubMed]

Ozbay, E.

N. A. Cinel, S. Cakmakyapan, G. Ertas, and E. Ozbay, “Concentric ring structures as efficient SERS substrates,” IEEE JSTQE 19, 4601605 (2013).

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[CrossRef] [PubMed]

Peron, O.

N. Guillot, H. Shen, B. Fremaux, O. Peron, E. Rinnert, T. Toury, and M. L. de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97(2), 023113 (2010).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Puente, C.

J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
[CrossRef]

Quidant, R.

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Radonic, V.

V. Crnojevic-Bengin, V. Radonic, and B. Jokanovic, “Fractal geometries of complementary split-ring resonators,” IEEE T. Microwave Theory 56(10), 2312–2321 (2008).
[CrossRef]

Retterer, S. T.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Rinnert, E.

N. Guillot, H. Shen, B. Fremaux, O. Peron, E. Rinnert, T. Toury, and M. L. de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97(2), 023113 (2010).
[CrossRef]

Rosa, L.

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi-R 5(5-6), 175–177 (2011).
[CrossRef]

Roxworthy, B. J.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[CrossRef] [PubMed]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Schultz, Z. D.

S. M. Asiala and Z. D. Schultz, “Characterization of hotspots in a highly enhancing SERS substrate,” Analyst (Lond.) 136(21), 4472–4479 (2011).
[CrossRef] [PubMed]

Sederberg, S.

S. Sederberg and A. Y. Elezzabi, “Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna,” Opt. Express 19(11), 10456–10461 (2011).
[CrossRef] [PubMed]

S. Sederberg and A. Y. Elezzabi, “The influence of Hausdorff dimension on plasmonic antennas with Pascal's triangle geometry,” Appl. Phys. Lett. 98(26), 261105 (2011).
[CrossRef]

Shen, H.

N. Guillot, H. Shen, B. Fremaux, O. Peron, E. Rinnert, T. Toury, and M. L. de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97(2), 023113 (2010).
[CrossRef]

Shim, M.

K. H. Hsu, J. H. Back, K. H. Fung, P. M. Ferreira, M. Shim, and N. X. Fang, “SERS EM field enhancement study through fast Raman mapping of Sierpinski carpet arrays,” J. Raman Spectroscopy 41(10), 1124–1130 (2010).
[CrossRef]

Simovski, C. R.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys-Usp 56(6), 539–564 (2013).
[CrossRef]

Skinner, K.

K. D. Alexander, K. Skinner, S. P. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10(11), 4488–4493 (2010).
[CrossRef] [PubMed]

Smythe, E. J.

Soler, J.

J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
[CrossRef]

Sun, K.

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi-R 5(5-6), 175–177 (2011).
[CrossRef]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Toury, T.

N. Guillot, H. Shen, B. Fremaux, O. Peron, E. Rinnert, T. Toury, and M. L. de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97(2), 023113 (2010).
[CrossRef]

Toussaint, K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[CrossRef] [PubMed]

Van Duyne, R. P.

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[CrossRef]

Viets, C.

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sensor Actuat. Biol. Chem. 51, 285–291 (1998).

Voges, E.

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sensor Actuat. Biol. Chem. 51, 285–291 (1998).

Volpe, G.

Wang, L.

L. Wang and X. F. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[CrossRef]

Wei, H.

K. D. Alexander, K. Skinner, S. P. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10(11), 4488–4493 (2010).
[CrossRef] [PubMed]

Werner, A. R. M. D. H.

A. R. M. D. H. Werner, Frontiers in Electromagnetics (Wiley, 1999).

Werner, D. H.

D. H. Werner and S. Ganguly, “An overview of fractal antenna engineering research,” IEEE Antennas Propag. 45(1), 38–57 (2003).
[CrossRef]

Xu, X. F.

L. Wang and X. F. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[CrossRef]

Yu, Z. F.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Zhang, S. P.

K. D. Alexander, K. Skinner, S. P. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10(11), 4488–4493 (2010).
[CrossRef] [PubMed]

Zhang, Z.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

Zhu, J. H.

J. H. Zhu, A. Hoorfar, and N. Engheta, “Bandwidth, cross-polarization, and feed-point characteristics of matched Hilbert antennas,” IEEE Antenna Wireless Proceedings 2(1), 2–5 (2003).
[CrossRef]

Acc. Chem. Res. (1)

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-From single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[CrossRef] [PubMed]

Anal. Chem. (2)

H. Kneipp, J. Kneipp, and K. Kneipp, “Surface-enhanced Raman optical activity on adenine in silver colloidal solution,” Anal. Chem. 78(4), 1363–1366 (2006).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[CrossRef]

Analyst (Lond.) (1)

S. M. Asiala and Z. D. Schultz, “Characterization of hotspots in a highly enhancing SERS substrate,” Analyst (Lond.) 136(21), 4472–4479 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

S. Sederberg and A. Y. Elezzabi, “The influence of Hausdorff dimension on plasmonic antennas with Pascal's triangle geometry,” Appl. Phys. Lett. 98(26), 261105 (2011).
[CrossRef]

L. Wang and X. F. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[CrossRef]

N. Guillot, H. Shen, B. Fremaux, O. Peron, E. Rinnert, T. Toury, and M. L. de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97(2), 023113 (2010).
[CrossRef]

IEEE Antenna Wireless Proceedings (1)

J. H. Zhu, A. Hoorfar, and N. Engheta, “Bandwidth, cross-polarization, and feed-point characteristics of matched Hilbert antennas,” IEEE Antenna Wireless Proceedings 2(1), 2–5 (2003).
[CrossRef]

IEEE Antennas Propag. (1)

D. H. Werner and S. Ganguly, “An overview of fractal antenna engineering research,” IEEE Antennas Propag. 45(1), 38–57 (2003).
[CrossRef]

IEEE JSTQE (1)

N. A. Cinel, S. Cakmakyapan, G. Ertas, and E. Ozbay, “Concentric ring structures as efficient SERS substrates,” IEEE JSTQE 19, 4601605 (2013).

IEEE T. Microwave Theory (1)

V. Crnojevic-Bengin, V. Radonic, and B. Jokanovic, “Fractal geometries of complementary split-ring resonators,” IEEE T. Microwave Theory 56(10), 2312–2321 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

J. S. Dahele and K. F. Lee, “On the resonant frequencies of the triangular patch antenna,” IEEE Trans. Antenn. Propag. 35(1), 100–101 (1987).
[CrossRef]

J. Am. Chem. Soc. (1)

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[CrossRef] [PubMed]

J. Raman Spectroscopy (1)

K. H. Hsu, J. H. Back, K. H. Fung, P. M. Ferreira, M. Shim, and N. X. Fang, “SERS EM field enhancement study through fast Raman mapping of Sierpinski carpet arrays,” J. Raman Spectroscopy 41(10), 1124–1130 (2010).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001).
[CrossRef]

Nano Lett. (6)

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: The reason for red shifts,” Nano Lett. 11(5), 2079–2082 (2011).
[CrossRef] [PubMed]

K. D. Alexander, K. Skinner, S. P. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10(11), 4488–4493 (2010).
[CrossRef] [PubMed]

N. K. Emani, T. F. Chung, X. J. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[CrossRef] [PubMed]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[CrossRef] [PubMed]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Opt. Express (4)

P. Roy. Soc. Lond. A. Mat. (1)

B. B. Mandelbrot and A. Blumen, “Fractal geometry - what is it, and what does it do,” P. Roy. Soc. Lond. A. Mat. 423(1864), 3–16 (1989).
[CrossRef]

Phys-Usp (1)

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys-Usp 56(6), 539–564 (2013).
[CrossRef]

Phys. Rev. Lett. (2)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Phys. Status Solidi-R (1)

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi-R 5(5-6), 175–177 (2011).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Sensor Actuat. Biol. Chem. (1)

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sensor Actuat. Biol. Chem. 51, 285–291 (1998).

Small (1)

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[CrossRef] [PubMed]

Other (1)

A. R. M. D. H. Werner, Frontiers in Electromagnetics (Wiley, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics (above) and SEM (below) images of (a) Bowtie, (b) Fractal-1, and (c) Fractal-2 structures. g = 65 nm, r = 400 nm, y = 420 nm. Scale bar is 100 nm. D s = ln3 ln2 1.585

Fig. 2
Fig. 2

Transmission spectra of the antenna arrays (a) experiment, (b) simulation results.

Fig. 3
Fig. 3

Transmission spectra of open and connected Fractal-1 structures: (a) experiment, (b) simulation.

Fig. 4
Fig. 4

SERS measurement results for Bowtie, Fractal-1 and Fractal-2.

Fig. 5
Fig. 5

Electric field distributions at the Stokes shifted wavelength, 895 nm. (a) Bowtie, (b) Fractal-1, and (c) Fractal-2. The maximum of the color bar is set to the same value for comparison.

Metrics