Abstract

In this paper, we present a free-standing metallodielectric grating structure that can achieve multiple transmission dips and peaks at normal incidence over the visible spectrum. The amount of dips and peaks can be adjusted by the thickness of dielectric film. In our proposed structure, there are three types of resonance modes supported: Surface plasmon polarition (SPP) at horizontal metal/dielectric interface, vertical cavity mode in the metal slits, and guide mode in the dielectric film. Physically the coupling and resonant interactions among these modes lead to the generation of dips and peaks in the transmission spectrum. The transmission peaks is further interpreted by using Fano resonance. More surprisingly, the simultaneous excitation of three types of resonance modes can enhance the field distribution, which results in unexpected nearly perfect absorption in such simple structure. Moreover, compared to other absorption peaks, this high absorption peak originates from that guide mode resonance in the dielectric film inhibits transmission induced by cavity mode resonance in the metal slits. These results can be used in the design of many photonics components.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [CrossRef] [PubMed]
  2. Y.-T. Yoon, C.-H. Park, and S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
    [CrossRef]
  3. C.-H. Park, Y.-T. Yoon, and S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
    [CrossRef] [PubMed]
  4. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  5. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
    [CrossRef]
  6. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [CrossRef]
  7. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmonson grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
    [CrossRef]
  8. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).
    [CrossRef] [PubMed]
  9. E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, and R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013).
    [CrossRef] [PubMed]
  10. A. Roszkiewicz and W. Nasalski, “Reflection suppression and absorption enhancement of optical field at thin metal gratings with narrow slits,” Opt. Lett. 37(18), 3759–3761 (2012).
    [CrossRef] [PubMed]
  11. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
    [CrossRef] [PubMed]
  12. W. Zhou, Y. Wu, M. Yu, P. Hao, G. Liu, and K. Li, “Extraordinary optical absorption based on guided-mode resonance,” Opt. Lett. 38(24), 5393–5396 (2013).
    [CrossRef] [PubMed]
  13. T. Ongarello, F. Romanato, P. Zilio, and M. Massari, “Polarization independence of extraordinary transmission trough 1D metallic gratings,” Opt. Express 19(10), 9426–9433 (2011).
    [CrossRef] [PubMed]
  14. G. Vincent, S. Collin, N. Bardou, J.-L. Pelouard, and R. Haïdar, “Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications,” J. Vac. Sci. Technol. B 26(6), 1852–1855 (2008).
    [CrossRef]
  15. Lumerical Solutions, http://www.lumerical.com .
  16. S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
    [CrossRef]
  17. A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
    [CrossRef]
  18. Y. Liang and W. Peng, “Theoretical study of transmission characteristics of sub-wavelength nano-structured metallic grating,” Appl. Spectrosc. 67(1), 49–53 (2013).
    [CrossRef] [PubMed]
  19. Y. Liang, W. Peng, R. Hu, and H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express 21(5), 6139–6152 (2013).
    [CrossRef] [PubMed]

2013 (5)

2012 (4)

2011 (3)

2010 (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

2009 (1)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

2008 (2)

G. Vincent, S. Collin, N. Bardou, J.-L. Pelouard, and R. Haïdar, “Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications,” J. Vac. Sci. Technol. B 26(6), 1852–1855 (2008).
[CrossRef]

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[CrossRef]

2006 (1)

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmonson grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Abbas, M. N.

Bardou, N.

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011).
[CrossRef] [PubMed]

G. Vincent, S. Collin, N. Bardou, J.-L. Pelouard, and R. Haïdar, “Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications,” J. Vac. Sci. Technol. B 26(6), 1852–1855 (2008).
[CrossRef]

Bouchon, P.

Brongersma, M. L.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmonson grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Chang, Y. C.

Cheng, C. W.

Chiu, C. W.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Collin, S.

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Fan, S.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmonson grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

García-Vidal, F. J.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[CrossRef]

Ghenuche, P.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Guo, J.

Guo, L. J.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[CrossRef]

Haïdar, R.

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Hao, P.

Hendrickson, J.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Héron, S.

Hu, R.

Kaplan, A. F.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[CrossRef]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Lai, K. T.

Lee, S.-S.

Y.-T. Yoon, C.-H. Park, and S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[CrossRef]

C.-H. Park, Y.-T. Yoon, and S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
[CrossRef] [PubMed]

Li, K.

Liang, Y.

Liu, G.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Martín-Moreno, L.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[CrossRef]

Massari, M.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Nasalski, W.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Ongarello, T.

Pardo, F.

Park, C.-H.

C.-H. Park, Y.-T. Yoon, and S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
[CrossRef] [PubMed]

Y.-T. Yoon, C.-H. Park, and S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[CrossRef]

Pelouard, J.-L.

Peng, W.

Rodrigo, S. G.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[CrossRef]

Romanato, F.

Roszkiewicz, A.

Sakat, E.

Shih, M. H.

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Veronis, G.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmonson grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Vincent, G.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Wu, Y.

Xu, T.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[CrossRef]

Yoon, Y.-T.

C.-H. Park, Y.-T. Yoon, and S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
[CrossRef] [PubMed]

Y.-T. Yoon, C.-H. Park, and S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[CrossRef]

Yu, M.

Yu, Z.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmonson grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Zhang, B.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Zhou, W.

Zilio, P.

Zou, H.

Appl. Phys. Express (1)

Y.-T. Yoon, C.-H. Park, and S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmonson grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[CrossRef]

Appl. Spectrosc. (1)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

G. Vincent, S. Collin, N. Bardou, J.-L. Pelouard, and R. Haïdar, “Large-area dielectric and metallic freestanding gratings for midinfrared optical filtering applications,” J. Vac. Sci. Technol. B 26(6), 1852–1855 (2008).
[CrossRef]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. B (2)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401 (2008).
[CrossRef]

Other (1)

Lumerical Solutions, http://www.lumerical.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Structure schematic of the proposed metallodielectric free-standing grating and its representative optical phenomenon. (a) Schematic diagram and its structure parameters. (b) Calculated transmission spectrum in TM polarized light and normal incidence with the thickness of SiO2 film H = 800 nm (red line) and H approaching infinite (blue dashed line).

Fig. 2
Fig. 2

Transmission versus wavelength and metal film thickness h at normal incidence (a) in linear color map and (b) in logarithmic color map with fixed P = 500 nm, w = 100 nm and H = 800 nm. Transmission minima in Fig. 2(a) are shown clearly in Fig. 2(b). The vertical white lines in Fig. 2(a) indicate the position of transmission minima.

Fig. 3
Fig. 3

Transmission versus wavelength and SiO2 film thickness H at normal incidence (a) in linear color map and (b) in logarithmic color map with fixed P = 500 nm, w = 100 nm and h = 200 nm. Transmission minima in Fig. 3(a) are shown clearly in Fig. 3(b). The vertical white lines in Fig. 3(a) indicate the position of transmission minima.

Fig. 4
Fig. 4

Spatial magnetic field (|H|) distribution for (a) λD1 = 533 nm, (b) λD2 = 608 nm, (c) λD3 = 686 nm, and (d) λD4 = 764 nm transmission dips at normal incidence. White lines depict schematically the profile of metallic grating and SiO2 dielectric film.

Fig. 5
Fig. 5

Spatial magnetic field (|H|) distribution for (a) λP1 = 584 nm, (b) λP2 = 638 nm, and (c) λP3 = 700nm transmission peaks at normal incidence. White lines depict schematically the profile of metallic grating and SiO2 dielectric film.

Fig. 6
Fig. 6

Transmission versus wavelength and incident angle (a) in linear color map and (b) in logarithmic color map. Transmission minima in Fig. 6(a) are shown clearly in Fig. 6(b). (c) Reflection and (d) absorption versus wavelength and incident angle in linear color map with fixed P = 500 nm, w = 100 nm, H = 800 nm and h = 200 nm.

Fig. 7
Fig. 7

Transmission, reflection and absorption spectra of the proposed metallodielectric free-standing grating at normal incidence for two specific metal film thickness (a) h = 332 nm and (b) h = 668 nm with fixed P = 500 nm, w = 100 nm and H = 800 nm.

Fig. 8
Fig. 8

Spatial magnetic field (|H|) distribution for (a) λA1 = 608 nm, and (b) λA2 = 686 nm high absorption peaks at normal incidence. White lines depict schematically the profile of metallic grating and SiO2 dielectric film.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε m ( ω )= ε r - ω P0 2 ω( ω+i γ 0 ) - Δ ε 0 Ω 0 2 ω 2 - Ω 0 2 +iω Γ 0
2π λ sinθ-n 2π P =- 2π λ ε m (ω)ε ε m (ω)+ε = k spp n=0,±1,±2,...,±N
φ 12 + φ 23 +k h m =2nπn=0,1,2,...,N
( k 0 2 ε 1 β 2 )H=nπ+arctan ( ε 1 ε 2 β 2 k 0 2 ε 2 k 0 2 ε 1 β 2 ) 1/2 +arctan ( ε 1 ε 3 β 2 k 0 2 ε 3 k 0 2 ε 1 β 2 ) 1/2

Metrics