Abstract

We report an improved method of fabricating a variable focus lens in which an in-plane pretension force is applied to a membrane. This method realized a lens with a large optical aperture and high performance in a low-optical-power region. The method was verified by comparing membranes in a simulation using the finite element method. A prototype with a 26 mm-diameter aperture was fabricated, and the wavefront behavior was measured by using a Shack-Hartmann sensor. Thanks to the in-plane pretension force, the lens achieved an infinite focal length with a wavefront error of 105.1 nm root mean square.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Excitation of capillary waves in strongly absorbing liquids by a modulated laser beam

Alexandre A. Kolomenskii and Hans A. Schuessler
Appl. Opt. 38(30) 6357-6364 (1999)

Tunable microfluidic microlenses

Armin Werber and Hans Zappe
Appl. Opt. 44(16) 3238-3245 (2005)

Optical characterization of adaptive fluidic silicone-membrane lenses

Florian Schneider, Jan Draheim, Robert Kamberger, Philipp Waibel, and Ulrike Wallrabe
Opt. Express 17(14) 11813-11821 (2009)

References

  • View by:
  • |
  • |
  • |

  1. H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (John Wiley & Sons, 2012).
  2. D. Graham-Rowe, “Liquid lenses make a splash,” Nat. Photonics2–4 (2006).
  3. X. Zeng and H. Jiang, “Liquid tunable microlenses based on MEMS techniques,” J. Phys. D Appl. Phys. 46(32), 323001 (2013).
    [Crossref] [PubMed]
  4. D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
    [Crossref]
  5. H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004).
    [Crossref] [PubMed]
  6. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
    [Crossref] [PubMed]
  7. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32(22), 4181–4186 (1993).
    [Crossref] [PubMed]
  8. H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009).
    [Crossref]
  9. S. Xu, Y. Liu, H. Ren, and S.-T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 18(12), 12430–12435 (2010).
    [Crossref] [PubMed]
  10. L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
    [Crossref]
  11. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [Crossref]
  12. C.-C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [Crossref] [PubMed]
  13. S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
    [Crossref]
  14. S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  15. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19(19), 18584–18592 (2011).
    [Crossref] [PubMed]
  16. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
    [Crossref] [PubMed]
  17. Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
    [Crossref] [PubMed]
  18. H. Oku and M. Ishikawa, “High-speed liquid lens for computer vision,” in 2010 IEEE Int. Conf. Robot. Autom., (IEEE, 2010).
    [Crossref]
  19. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
    [Crossref] [PubMed]
  20. H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
    [Crossref]
  21. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128 (2004).
    [Crossref]
  22. M. Sheploak and J. Dugundji, “Large Deflections of Clamped Circular Plates Under Initial Tension and Transitions to Membrane Behavior,” J. Appl. Mech. 65(1), 107 (1998).
    [Crossref]
  23. F. Zhao, “Nonlinear solutions for circular membranes and thin plates,” in SPIE Proc. 6926, (2008).
  24. C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
    [Crossref] [PubMed]
  25. V. N. Mahajan, “Strehl ratio for primary aberrations: some analytical results for circular and annular pupils,” J. Opt. Soc. Am. 72(9), 1258 (1982).
    [Crossref]

2013 (4)

X. Zeng and H. Jiang, “Liquid tunable microlenses based on MEMS techniques,” J. Phys. D Appl. Phys. 46(32), 323001 (2013).
[Crossref] [PubMed]

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

2010 (1)

2009 (1)

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

2004 (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128 (2004).
[Crossref]

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004).
[Crossref] [PubMed]

2003 (1)

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
[Crossref]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

1998 (1)

M. Sheploak and J. Dugundji, “Large Deflections of Clamped Circular Plates Under Initial Tension and Transitions to Membrane Behavior,” J. Appl. Mech. 65(1), 107 (1998).
[Crossref]

1993 (1)

1982 (1)

1979 (1)

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Anderson, P. A.

Berdichevsky, Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
[Crossref]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Chen, H. S.

Cheng, C.-C.

Choi, J.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
[Crossref]

Dugundji, J.

M. Sheploak and J. Dugundji, “Large Deflections of Clamped Circular Plates Under Initial Tension and Transitions to Membrane Behavior,” J. Appl. Mech. 65(1), 107 (1998).
[Crossref]

Eliceiri, K.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Fox, D.

Graham-Rowe, D.

D. Graham-Rowe, “Liquid lenses make a splash,” Nat. Photonics2–4 (2006).

Hall, G.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Hashimoto, K.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128 (2004).
[Crossref]

Ishikawa, M.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009).
[Crossref]

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004).
[Crossref] [PubMed]

Jiang, H.

X. Zeng and H. Jiang, “Liquid tunable microlenses based on MEMS techniques,” J. Phys. D Appl. Phys. 46(32), 323001 (2013).
[Crossref] [PubMed]

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128 (2004).
[Crossref]

Li, C.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Liebetraut, P.

Lien, V.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
[Crossref]

Lin, Y. H.

Liu, Y.

Lo, Y.-H.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
[Crossref]

Mader, D.

Mahajan, V. N.

Morita, S.

Mugele, F.

Murade, C. U.

Oh, J. M.

Oku, H.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009).
[Crossref]

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004).
[Crossref] [PubMed]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Ren, H.

Sato, S.

Seifert, A.

Sheploak, M.

M. Sheploak and J. Dugundji, “Large Deflections of Clamped Circular Plates Under Initial Tension and Transitions to Membrane Behavior,” J. Appl. Mech. 65(1), 107 (1998).
[Crossref]

Sugiura, N.

Takahashi, S.

Uchida, M.

van den Ende, D.

Waibel, P.

Wang, B.

Wang, L.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

Wu, B.

Wu, S.-T.

Xu, S.

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

S. Xu, Y. Liu, H. Ren, and S.-T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 18(12), 12430–12435 (2010).
[Crossref] [PubMed]

Yanase, S.

Ye, M.

Yeh, J. A.

Zappe, H.

Zeng, X.

X. Zeng and H. Jiang, “Liquid tunable microlenses based on MEMS techniques,” J. Phys. D Appl. Phys. 46(32), 323001 (2013).
[Crossref] [PubMed]

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Zhang, D.-Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
[Crossref]

Zhu, D.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (6)

H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128 (2004).
[Crossref]

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009).
[Crossref]

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003).
[Crossref]

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

J. Appl. Mech. (1)

M. Sheploak and J. Dugundji, “Large Deflections of Clamped Circular Plates Under Initial Tension and Transitions to Membrane Behavior,” J. Appl. Mech. 65(1), 107 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. D Appl. Phys. (2)

X. Zeng and H. Jiang, “Liquid tunable microlenses based on MEMS techniques,” J. Phys. D Appl. Phys. 46(32), 323001 (2013).
[Crossref] [PubMed]

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Opt. Express (7)

Other (4)

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (John Wiley & Sons, 2012).

D. Graham-Rowe, “Liquid lenses make a splash,” Nat. Photonics2–4 (2006).

H. Oku and M. Ishikawa, “High-speed liquid lens for computer vision,” in 2010 IEEE Int. Conf. Robot. Autom., (IEEE, 2010).
[Crossref]

F. Zhao, “Nonlinear solutions for circular membranes and thin plates,” in SPIE Proc. 6926, (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A comparison of the membrane with in-plane pretension (red line) and without pretension (blue line) was shown in the upper. The pretension model exhibited better symmetrical deformation, as indicated by the small shift distance (upper left), and lower wavefront errors, as indicated by the small RMS error (upper right). Two snapshots of the deformed membrane models were shown in the lower, when 6.468 Pa and 36.468 Pa external pressure were loading on the no pretentioned membrane (lower left) and pretentioned membrane (lower right), respectively.

Fig. 2
Fig. 2

(upper) A cross-sectional view of the structure of the variable focus lens and the membrane. The membrane was bonded to Frame A beforehand and was clamped by Frame B, which had an inner circular bugle so as to push the membrane upward, and the three parts were fixed together. (lower) A photograph of the LML system and an exploded view of the model.

Fig. 3
Fig. 3

Illustration of the wavefront error measurement when the lens had an infinite focal length (upper), and a photograph of the experimental setup (lower).

Fig. 4
Fig. 4

Wavefront error with an infinite focal length.

Fig. 5
Fig. 5

An image was taken from the LML lens prototype when its focal length was 500 mm.

Tables (1)

Tables Icon

Table 1 Wavefront error performance (P-V and RMS) with different focal lengths.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

l c = σ | ρ liquid1 ρ liquid2 |g ,
R( r )= a 4 P 64D { ( r a ) 4 2 ( r a ) 2 +1 },
D=E d 3 /12(1 v 2 ).
P hydraulic =( ρ liquid1 ρ liquid2 )×g×2a,
ε thermal =α( T T Ref ),
σ thermal =Eα( T T Ref ),

Metrics