Abstract

We investigate the influence of Beryllium (Be) doping on the performance of photoconductive THz detectors based on molecular beam epitaxy (MBE) of low temperature (LT) grown In0.53Ga0.47As/In0.52Al0.48As multilayer heterostructures (MLHS). We show how the optical excitation power affects carrier lifetime, detector signal, dynamic range and bandwidth in THz time domain spectroscopy (TDS) in dependence on Be-doping concentration. For optimal doping we measured a THz bandwidth in excess of 6 THz and a dynamic range of up to 90 dB.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Roehle, R. Dietz, B. Sartorius, and M. Schell, “Fiber-coupled terahertz TDS combining high speed operation with superior dynamic range,” 37th Int. Conf. Infrared, Millimeter, Terahertz Waves, 1–2 (2012).
    [CrossRef]
  2. P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photonics Rev. 5, 124 (2011), http://onlinelibrary.wiley.com/doi/10.1002/lpor.201000011/abstract .
    [CrossRef]
  3. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005), http://link.aip.org/link/doi/10.1063/1.1861495 .
    [CrossRef]
  4. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
    [CrossRef] [PubMed]
  5. A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
    [CrossRef]
  6. C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
    [CrossRef]
  7. H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 microm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010).
    [CrossRef] [PubMed]
  8. R. J. B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, “THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions,” Opt. Express 19(27), 25911–25917 (2011).
    [CrossRef] [PubMed]
  9. R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed THz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
    [CrossRef]
  10. P. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996).
    [CrossRef]
  11. L. Duvillaret, F. Garet, J. F. Roux, and J.-L. Coutaz, “Influence of noise on the characterization of materials by terahertz time-domain spectroscopy,” IEEE J. Quantum Electron. 7(4), 615–623 (2001).
    [CrossRef]
  12. E. Castro-Camus, M. B. Johnston, and J. Lloyd-Hughes, “Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers,” Semicond. Sci. Technol. 27(11), 115011 (2012).
    [CrossRef]
  13. B. Globisch, R. J. B. Dietz, D. Stanze, R. Roehle, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
    [CrossRef]
  14. B. Grandidier, H. Chen, R. M. Feenstra, D. T. McInturff, P. W. Juodawlkis, and S. E. Ralph, “Scanning tunneling microscopy and spectroscopy of arsenic antisites in low temperature grown InGaAs,” Appl. Phys. Lett. 74(10), 1439 (1999).
  15. L. Duvillaret, F. Garet, and J. Coutaz, “Influence of noise on the characterization of materials by terahertz time-domain spectroscopy,” J. Opt. Soc. Am. B 17(3), 452–461 (2000).
    [CrossRef]
  16. P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005).
    [CrossRef] [PubMed]
  17. M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990).
    [CrossRef]
  18. E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
    [CrossRef]

2014 (1)

B. Globisch, R. J. B. Dietz, D. Stanze, R. Roehle, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
[CrossRef]

2013 (1)

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed THz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[CrossRef]

2012 (1)

E. Castro-Camus, M. B. Johnston, and J. Lloyd-Hughes, “Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers,” Semicond. Sci. Technol. 27(11), 115011 (2012).
[CrossRef]

2011 (1)

2010 (3)

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[CrossRef]

H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 microm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010).
[CrossRef] [PubMed]

2008 (2)

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[CrossRef] [PubMed]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[CrossRef]

2005 (2)

P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005).
[CrossRef] [PubMed]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005), http://link.aip.org/link/doi/10.1063/1.1861495 .
[CrossRef]

2001 (1)

L. Duvillaret, F. Garet, J. F. Roux, and J.-L. Coutaz, “Influence of noise on the characterization of materials by terahertz time-domain spectroscopy,” IEEE J. Quantum Electron. 7(4), 615–623 (2001).
[CrossRef]

2000 (1)

1999 (1)

B. Grandidier, H. Chen, R. M. Feenstra, D. T. McInturff, P. W. Juodawlkis, and S. E. Ralph, “Scanning tunneling microscopy and spectroscopy of arsenic antisites in low temperature grown InGaAs,” Appl. Phys. Lett. 74(10), 1439 (1999).

1996 (1)

1990 (1)

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990).
[CrossRef]

Böttcher, J.

Cannard, P. J.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[CrossRef]

Castro-Camus, E.

E. Castro-Camus, M. B. Johnston, and J. Lloyd-Hughes, “Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers,” Semicond. Sci. Technol. 27(11), 115011 (2012).
[CrossRef]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[CrossRef]

Chen, H.

B. Grandidier, H. Chen, R. M. Feenstra, D. T. McInturff, P. W. Juodawlkis, and S. E. Ralph, “Scanning tunneling microscopy and spectroscopy of arsenic antisites in low temperature grown InGaAs,” Appl. Phys. Lett. 74(10), 1439 (1999).

Coutaz, J.

Coutaz, J.-L.

L. Duvillaret, F. Garet, J. F. Roux, and J.-L. Coutaz, “Influence of noise on the characterization of materials by terahertz time-domain spectroscopy,” IEEE J. Quantum Electron. 7(4), 615–623 (2001).
[CrossRef]

Cunningham, J. E.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[CrossRef]

Davies, A. G.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[CrossRef]

Dietz, R.

H. Roehle, R. Dietz, B. Sartorius, and M. Schell, “Fiber-coupled terahertz TDS combining high speed operation with superior dynamic range,” 37th Int. Conf. Infrared, Millimeter, Terahertz Waves, 1–2 (2012).
[CrossRef]

Dietz, R. J. B.

B. Globisch, R. J. B. Dietz, D. Stanze, R. Roehle, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
[CrossRef]

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed THz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[CrossRef]

R. J. B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, “THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions,” Opt. Express 19(27), 25911–25917 (2011).
[CrossRef] [PubMed]

H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 microm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010).
[CrossRef] [PubMed]

Driscoll, D. C.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

Duvillaret, L.

L. Duvillaret, F. Garet, J. F. Roux, and J.-L. Coutaz, “Influence of noise on the characterization of materials by terahertz time-domain spectroscopy,” IEEE J. Quantum Electron. 7(4), 615–623 (2001).
[CrossRef]

L. Duvillaret, F. Garet, and J. Coutaz, “Influence of noise on the characterization of materials by terahertz time-domain spectroscopy,” J. Opt. Soc. Am. B 17(3), 452–461 (2000).
[CrossRef]

Feenstra, R. M.

B. Grandidier, H. Chen, R. M. Feenstra, D. T. McInturff, P. W. Juodawlkis, and S. E. Ralph, “Scanning tunneling microscopy and spectroscopy of arsenic antisites in low temperature grown InGaAs,” Appl. Phys. Lett. 74(10), 1439 (1999).

Fischer, B. M.

Fu, L.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[CrossRef]

Garet, F.

L. Duvillaret, F. Garet, J. F. Roux, and J.-L. Coutaz, “Influence of noise on the characterization of materials by terahertz time-domain spectroscopy,” IEEE J. Quantum Electron. 7(4), 615–623 (2001).
[CrossRef]

L. Duvillaret, F. Garet, and J. Coutaz, “Influence of noise on the characterization of materials by terahertz time-domain spectroscopy,” J. Opt. Soc. Am. B 17(3), 452–461 (2000).
[CrossRef]

Gerhard, M.

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed THz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[CrossRef]

R. J. B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, “THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions,” Opt. Express 19(27), 25911–25917 (2011).
[CrossRef] [PubMed]

Globisch, B.

B. Globisch, R. J. B. Dietz, D. Stanze, R. Roehle, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
[CrossRef]

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed THz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[CrossRef]

Göbel, T.

B. Globisch, R. J. B. Dietz, D. Stanze, R. Roehle, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
[CrossRef]

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed THz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[CrossRef]

Gossard, A. C.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

Grandidier, B.

B. Grandidier, H. Chen, R. M. Feenstra, D. T. McInturff, P. W. Juodawlkis, and S. E. Ralph, “Scanning tunneling microscopy and spectroscopy of arsenic antisites in low temperature grown InGaAs,” Appl. Phys. Lett. 74(10), 1439 (1999).

Grischkowsky, D.

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990).
[CrossRef]

Hanson, M. P.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

Hatem, O.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[CrossRef]

Hensel, H. J.

Jacobsen, R. H.

Jagadish, C.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[CrossRef]

Jepsen, P.

Jepsen, P. U.

Johnston, M. B.

E. Castro-Camus, M. B. Johnston, and J. Lloyd-Hughes, “Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers,” Semicond. Sci. Technol. 27(11), 115011 (2012).
[CrossRef]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[CrossRef]

Juodawlkis, P. W.

B. Grandidier, H. Chen, R. M. Feenstra, D. T. McInturff, P. W. Juodawlkis, and S. E. Ralph, “Scanning tunneling microscopy and spectroscopy of arsenic antisites in low temperature grown InGaAs,” Appl. Phys. Lett. 74(10), 1439 (1999).

Keiding, S. R.

Koch, M.

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed THz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[CrossRef]

R. J. B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, “THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions,” Opt. Express 19(27), 25911–25917 (2011).
[CrossRef] [PubMed]

Künzel, H.

Linfield, E. H.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[CrossRef]

Lloyd-Hughes, J.

E. Castro-Camus, M. B. Johnston, and J. Lloyd-Hughes, “Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers,” Semicond. Sci. Technol. 27(11), 115011 (2012).
[CrossRef]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[CrossRef]

Lu, H.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

McInturff, D. T.

B. Grandidier, H. Chen, R. M. Feenstra, D. T. McInturff, P. W. Juodawlkis, and S. E. Ralph, “Scanning tunneling microscopy and spectroscopy of arsenic antisites in low temperature grown InGaAs,” Appl. Phys. Lett. 74(10), 1439 (1999).

Moodie, D. G.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[CrossRef]

Ospald, F.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

Ralph, S. E.

B. Grandidier, H. Chen, R. M. Feenstra, D. T. McInturff, P. W. Juodawlkis, and S. E. Ralph, “Scanning tunneling microscopy and spectroscopy of arsenic antisites in low temperature grown InGaAs,” Appl. Phys. Lett. 74(10), 1439 (1999).

Robertson, M. J.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[CrossRef]

Roehle, H.

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed THz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[CrossRef]

H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 microm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010).
[CrossRef] [PubMed]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[CrossRef] [PubMed]

H. Roehle, R. Dietz, B. Sartorius, and M. Schell, “Fiber-coupled terahertz TDS combining high speed operation with superior dynamic range,” 37th Int. Conf. Infrared, Millimeter, Terahertz Waves, 1–2 (2012).
[CrossRef]

Roehle, R.

B. Globisch, R. J. B. Dietz, D. Stanze, R. Roehle, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
[CrossRef]

Roux, J. F.

L. Duvillaret, F. Garet, J. F. Roux, and J.-L. Coutaz, “Influence of noise on the characterization of materials by terahertz time-domain spectroscopy,” IEEE J. Quantum Electron. 7(4), 615–623 (2001).
[CrossRef]

Sartorius, B.

Schell, M.

B. Globisch, R. J. B. Dietz, D. Stanze, R. Roehle, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
[CrossRef]

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed THz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[CrossRef]

R. J. B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, “THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions,” Opt. Express 19(27), 25911–25917 (2011).
[CrossRef] [PubMed]

H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 microm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010).
[CrossRef] [PubMed]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[CrossRef] [PubMed]

H. Roehle, R. Dietz, B. Sartorius, and M. Schell, “Fiber-coupled terahertz TDS combining high speed operation with superior dynamic range,” 37th Int. Conf. Infrared, Millimeter, Terahertz Waves, 1–2 (2012).
[CrossRef]

Schlak, M.

Schwagmann, A.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

Smet, J. H.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

Stanze, D.

Suzuki, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005), http://link.aip.org/link/doi/10.1063/1.1861495 .
[CrossRef]

Tan, H. H.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[CrossRef]

Tonouchi, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005), http://link.aip.org/link/doi/10.1063/1.1861495 .
[CrossRef]

van Exter, M.

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990).
[CrossRef]

Velauthapillai, A.

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed THz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[CrossRef]

Venghaus, H.

Wood, C. D.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[CrossRef]

Zhao, Z.-Y.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

Appl. Phys. Lett. (6)

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005), http://link.aip.org/link/doi/10.1063/1.1861495 .
[CrossRef]

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[CrossRef]

R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed THz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[CrossRef]

B. Globisch, R. J. B. Dietz, D. Stanze, R. Roehle, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
[CrossRef]

B. Grandidier, H. Chen, R. M. Feenstra, D. T. McInturff, P. W. Juodawlkis, and S. E. Ralph, “Scanning tunneling microscopy and spectroscopy of arsenic antisites in low temperature grown InGaAs,” Appl. Phys. Lett. 74(10), 1439 (1999).

IEEE J. Quantum Electron. (1)

L. Duvillaret, F. Garet, J. F. Roux, and J.-L. Coutaz, “Influence of noise on the characterization of materials by terahertz time-domain spectroscopy,” IEEE J. Quantum Electron. 7(4), 615–623 (2001).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990).
[CrossRef]

J. Appl. Phys. (1)

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (3)

Opt. Lett. (1)

Semicond. Sci. Technol. (1)

E. Castro-Camus, M. B. Johnston, and J. Lloyd-Hughes, “Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers,” Semicond. Sci. Technol. 27(11), 115011 (2012).
[CrossRef]

Other (2)

H. Roehle, R. Dietz, B. Sartorius, and M. Schell, “Fiber-coupled terahertz TDS combining high speed operation with superior dynamic range,” 37th Int. Conf. Infrared, Millimeter, Terahertz Waves, 1–2 (2012).
[CrossRef]

P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photonics Rev. 5, 124 (2011), http://onlinelibrary.wiley.com/doi/10.1002/lpor.201000011/abstract .
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Plot of the logarithmic DT signals measured for (a) 0.25 mW, (b) 2 mW and (c) 16 mW pump power for all four different doping levels. At 0.25 mW all signals decay mono-exponentially. At 2 mW, there is an onset of trap saturation for MLHS 2 and 1, respectively. For 16 mW, both MLHS 1 and 2 show strong trap saturation, while MLHS 3 and 4 only show minor partial trap filling.

Fig. 2
Fig. 2

Measured scattering time constants (black squares), unsaturated capture time constants (blue triangles) for DT measurements and THz peak-to-peak detector current (green circles) from THz-TDS measurements at an optical excitation of 0.25 mW.

Fig. 3
Fig. 3

THz-TDS spectra obtained from detectors made from the different MLHS samples for 0.25 mW, 2 mW and 16 mW of optical excitation power at the detector. The grey striped line indicates the noise of the detection electronics without a connected antenna.

Fig. 4
Fig. 4

Peak-to-peak amplitude of the detected THz-TDS pulse in dependence of the optical excitation power at the detectors made form MLHS 1-4. The striped lines are guidelines for the eyes.

Fig. 5
Fig. 5

Measured (full symbols) root mean square noise current and calculated Nyquist noise current (open symbols) shown in dependence of the optical excitation power for four different detectors made form MLHS 1-4. The grey striped line indicates the system noise measured with an open circuit.

Fig. 6
Fig. 6

(a) Dynamic range and (b) detectable bandwidth of the THz-TDS signal in dependence of the optical excitation power for four different detectors made form MLHS 1-4. The striped lines are guidelines for the eyes.

Fig. 7
Fig. 7

Average noise floor in THz-TDS spectra taken between 6.5 THz and 10THz in dependence of the optical excitation power at the detector made form MLHS 4 and for a high mobility MLHS emitter at 100 V bias (blue squares), a LT-grown emitter made from MLHS 4 at 50 V bias (green circles) and without an incident THz field (black triangles).

Fig. 8
Fig. 8

FFT spectrum obtained for a high mobility MLHS emitter at 120 V bias and 25 mW optical excitation and a detector made from MLHS 4 at 16 mW optical excitation. The spectrum is obtained by averaging ten thousand pulse traces at 16 Hz measurement rate (approx. 10 min). The corresponding THz Pulse trace is shown in the inset.

Tables (1)

Tables Icon

Table 1 List of Samples Used as Detectors in THz-TDS Setup with Respective Growth and DT Parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

j(τ)=σ(t) E THz (t)=en(t)μ(t) E THz (t),
j(ω)=en(ω)μ(ω) E THz (ω).
j d e l t a ( ω ) = e 1 2 π μ ( ω ) E T H z ( ω ) ,
j t h e t a ( ω ) = e ( i 2 π ω + δ ( ω ) ) μ ( ω ) E T H z ( ω ) .
I N = 4 K B TΔf R 1
I N = 2 e I T H z 2 e P o p t , det

Metrics