Abstract

The ordered, lamellae-structured ridges on the wing scales of Morpho butterflies give rise to their striking blue iridescence by multilayer interference and grating diffraction. At the same time, the random offsets among the ridges broaden the directional multilayer reflection peaks and the grating diffraction peaks that the color appears the same at various viewing angles, contrary to the very definition of iridescence. While the overall process is well understood, there has been little investigation into confirming the roles of each factor due to the difficulty of controllably reproducing such complex structures. Here we use a combination of self-assembly, selective etching, and directional deposition to fabricate Morpho-inspired structure with controlled random offsets. We find that while random offsets are necessary, it alone is not sufficient to produce the broad-angle reflection of Morpho butterflies. We identify diffraction as a critical factor for the bright, anisotropic broadening of the reflection peak of Morpho butterflies to a solid angle of 0.23 sr, and suggest random macroscopic surface curvature as a practical alternative, with an isotropic broad reflection peak whose solid angle can reach 0.11 sr at an incident angle of 60 o.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [CrossRef] [PubMed]
  2. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
    [CrossRef] [PubMed]
  3. L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5(1), 27–51 (2011).
    [CrossRef]
  4. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
    [CrossRef]
  5. V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
    [CrossRef] [PubMed]
  6. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by moth eye principle,” Nature 244(5414), 281–282 (1973).
    [CrossRef]
  7. E. Iwase, K. Matsumoto, and I. Shimoyama, “The structural-color based on the mechanism butterfly wing coloring for wide viewing angle reflective display,” in Proceedings of 17th IEEE international conference on MEMS (Maastricht Exhibition and Convention Centre, Maastricht, 2004), pp. 105–108.
    [CrossRef]
  8. R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
    [CrossRef]
  9. A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
    [CrossRef]
  10. K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
    [CrossRef]
  11. S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6(Suppl 2), S115–S132 (2009).
    [CrossRef] [PubMed]
  12. S. Berthier, Iridescences: The Physical Colors of Insects (Springer, 2007).
  13. C. W. Mason, “Structural colors in insects. I,” J. Phys. Chem. 30(3), 383–395 (1926).
    [CrossRef]
  14. C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem. 31(3), 321–354 (1927).
    [CrossRef]
  15. C. W. Mason, “Structural colors in insects. III,” J. Phys. Chem. 31(12), 1856–1872 (1927).
    [CrossRef]
  16. S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
    [CrossRef] [PubMed]
  17. Y. Takeoka, “Angle-independent structural coloured amorphous arrays,” J. Mater. Chem. 22(44), 23299 (2012).
    [CrossRef]
  18. S. Berthier, Photonique de Morphos (Springer, 2010).
  19. S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci. 269(1499), 1417–1421 (2002).
    [CrossRef] [PubMed]
  20. H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt. 30(24), 3492–3500 (1991).
    [CrossRef] [PubMed]
  21. A. Saito, Y. Ishikawa, Y. Miyamura, M. Akai-Kasaya, and Y. Kuwahara, “Optimization of reproduced Morpho-blue coloration,” Proc. SPIE 6767, 676706 (2007).
    [CrossRef]
  22. S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).
  23. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
    [CrossRef]
  24. A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnology 11(4), 2785–2792 (2011).
    [CrossRef] [PubMed]
  25. J. Boulenguez, S. Berthier, and F. Leroy, “Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly,” Appl. Phys., A Mater. Sci. Process. 106(4), 1005–1011 (2012).
    [CrossRef]
  26. D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051924 (2009).
    [CrossRef] [PubMed]
  27. M. Kambe, D. Zhu, and S. Kinoshita, “Origin of retroreflection from a wing of the Morpho butterfly,” J. Phys. Soc. Jpn. 80(5), 054801 (2011).
    [CrossRef]
  28. S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc. Biol. Sci. 273(1583), 129–134 (2006).
    [CrossRef] [PubMed]
  29. K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
    [CrossRef]
  30. A. Saito, S. Yoshioka, and S. Kinoshita, “Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors,” Proc. SPIE 5526, 188–194 (2004).
    [CrossRef]
  31. R. H. Siddique, S. Diewald, J. Leuthold, and H. Hölscher, “Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies,” Opt. Express 21(12), 14351–14361 (2013).
    [CrossRef] [PubMed]
  32. K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
    [CrossRef] [PubMed]
  33. D. Ge, L. Yang, G. Wu, and S. Yang, “Spray coating of superhydrophobic and angle-independent coloured films,” Chem. Commun. 50(19), 2469–2472 (2014).
    [CrossRef] [PubMed]
  34. L. P. Biró, K. Kertész, E. Horváth, G. I. Márk, G. Molnár, Z. Vértesy, J.-F. Tsai, A. Kun, Zs. Bálint, and J. P. Vigneron, “Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a ‘blueprint’,” J. R. Soc. Interface 7(47), 887–894 (2010).
    [CrossRef] [PubMed]
  35. I. Tamáska, Z. Vértesy, A. Deák, P. Petrik, K. Kertész, and L. P. Biró, “Optical properties of bioinspired disordered photonic nanoarchitectures,” Nanopages 8(2), 17–30 (2013).
    [CrossRef]
  36. K. Chung and J. H. Shin, “Range and stability of structural colors generated by Morpho-inspired color reflectors,” J. Opt. Soc. Am. A 30(5), 962–968 (2013).
    [CrossRef] [PubMed]
  37. J. B. Schneider, “Understanding the FDTD method” (2010), www.eecs.wsu.edu/~schneidj/ufdtd .
  38. P. Pirih, B. D. Wilts, and D. G. Stavenga, “Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197(10), 987–997 (2011).
    [CrossRef] [PubMed]

2014 (1)

D. Ge, L. Yang, G. Wu, and S. Yang, “Spray coating of superhydrophobic and angle-independent coloured films,” Chem. Commun. 50(19), 2469–2472 (2014).
[CrossRef] [PubMed]

2013 (3)

2012 (4)

K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[CrossRef] [PubMed]

J. Boulenguez, S. Berthier, and F. Leroy, “Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly,” Appl. Phys., A Mater. Sci. Process. 106(4), 1005–1011 (2012).
[CrossRef]

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[CrossRef]

Y. Takeoka, “Angle-independent structural coloured amorphous arrays,” J. Mater. Chem. 22(44), 23299 (2012).
[CrossRef]

2011 (4)

L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5(1), 27–51 (2011).
[CrossRef]

M. Kambe, D. Zhu, and S. Kinoshita, “Origin of retroreflection from a wing of the Morpho butterfly,” J. Phys. Soc. Jpn. 80(5), 054801 (2011).
[CrossRef]

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnology 11(4), 2785–2792 (2011).
[CrossRef] [PubMed]

P. Pirih, B. D. Wilts, and D. G. Stavenga, “Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197(10), 987–997 (2011).
[CrossRef] [PubMed]

2010 (1)

L. P. Biró, K. Kertész, E. Horváth, G. I. Márk, G. Molnár, Z. Vértesy, J.-F. Tsai, A. Kun, Zs. Bálint, and J. P. Vigneron, “Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a ‘blueprint’,” J. R. Soc. Interface 7(47), 887–894 (2010).
[CrossRef] [PubMed]

2009 (3)

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051924 (2009).
[CrossRef] [PubMed]

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6(Suppl 2), S115–S132 (2009).
[CrossRef] [PubMed]

2008 (2)

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

2007 (2)

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[CrossRef]

A. Saito, Y. Ishikawa, Y. Miyamura, M. Akai-Kasaya, and Y. Kuwahara, “Optimization of reproduced Morpho-blue coloration,” Proc. SPIE 6767, 676706 (2007).
[CrossRef]

2006 (1)

S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc. Biol. Sci. 273(1583), 129–134 (2006).
[CrossRef] [PubMed]

2005 (2)

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Saito, S. Yoshioka, and S. Kinoshita, “Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors,” Proc. SPIE 5526, 188–194 (2004).
[CrossRef]

2003 (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

2002 (2)

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

1999 (2)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef] [PubMed]

1991 (1)

1973 (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by moth eye principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

1927 (2)

C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem. 31(3), 321–354 (1927).
[CrossRef]

C. W. Mason, “Structural colors in insects. III,” J. Phys. Chem. 31(12), 1856–1872 (1927).
[CrossRef]

1926 (1)

C. W. Mason, “Structural colors in insects. I,” J. Phys. Chem. 30(3), 383–395 (1926).
[CrossRef]

Akai-Kasaya, M.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnology 11(4), 2785–2792 (2011).
[CrossRef] [PubMed]

A. Saito, Y. Ishikawa, Y. Miyamura, M. Akai-Kasaya, and Y. Kuwahara, “Optimization of reproduced Morpho-blue coloration,” Proc. SPIE 6767, 676706 (2007).
[CrossRef]

Bálint, Zs.

L. P. Biró, K. Kertész, E. Horváth, G. I. Márk, G. Molnár, Z. Vértesy, J.-F. Tsai, A. Kun, Zs. Bálint, and J. P. Vigneron, “Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a ‘blueprint’,” J. R. Soc. Interface 7(47), 887–894 (2010).
[CrossRef] [PubMed]

Berthier, S.

J. Boulenguez, S. Berthier, and F. Leroy, “Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly,” Appl. Phys., A Mater. Sci. Process. 106(4), 1005–1011 (2012).
[CrossRef]

Biró, L. P.

I. Tamáska, Z. Vértesy, A. Deák, P. Petrik, K. Kertész, and L. P. Biró, “Optical properties of bioinspired disordered photonic nanoarchitectures,” Nanopages 8(2), 17–30 (2013).
[CrossRef]

L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5(1), 27–51 (2011).
[CrossRef]

L. P. Biró, K. Kertész, E. Horváth, G. I. Márk, G. Molnár, Z. Vértesy, J.-F. Tsai, A. Kun, Zs. Bálint, and J. P. Vigneron, “Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a ‘blueprint’,” J. R. Soc. Interface 7(47), 887–894 (2010).
[CrossRef] [PubMed]

Boulenguez, J.

J. Boulenguez, S. Berthier, and F. Leroy, “Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly,” Appl. Phys., A Mater. Sci. Process. 106(4), 1005–1011 (2012).
[CrossRef]

Brabec, C. J.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

Cai, D.

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051924 (2009).
[CrossRef] [PubMed]

Chung, K.

K. Chung and J. H. Shin, “Range and stability of structural colors generated by Morpho-inspired color reflectors,” J. Opt. Soc. Am. A 30(5), 962–968 (2013).
[CrossRef] [PubMed]

K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[CrossRef] [PubMed]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by moth eye principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Cole, J. B.

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051924 (2009).
[CrossRef] [PubMed]

Cournoyer, J. R.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[CrossRef]

Crne, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

Deák, A.

I. Tamáska, Z. Vértesy, A. Deák, P. Petrik, K. Kertész, and L. P. Biró, “Optical properties of bioinspired disordered photonic nanoarchitectures,” Nanopages 8(2), 17–30 (2013).
[CrossRef]

Deng, T.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[CrossRef]

Dennler, G.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

Diewald, S.

Doucet, S. M.

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6(Suppl 2), S115–S132 (2009).
[CrossRef] [PubMed]

Dovidenko, K.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[CrossRef]

Forberich, K.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

Fromherz, T.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

Fujii, Y.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

Ge, D.

D. Ge, L. Yang, G. Wu, and S. Yang, “Spray coating of superhydrophobic and angle-independent coloured films,” Chem. Commun. 50(19), 2469–2472 (2014).
[CrossRef] [PubMed]

Ghiradella, H.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[CrossRef]

H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt. 30(24), 3492–3500 (1991).
[CrossRef] [PubMed]

Ghiradella, H. T.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[CrossRef]

Han, M. G.

K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[CrossRef] [PubMed]

Haruyama, Y.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

Heo, C. J.

K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[CrossRef] [PubMed]

Hingerl, K.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

Hölscher, H.

Horváth, E.

L. P. Biró, K. Kertész, E. Horváth, G. I. Márk, G. Molnár, Z. Vértesy, J.-F. Tsai, A. Kun, Zs. Bálint, and J. P. Vigneron, “Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a ‘blueprint’,” J. R. Soc. Interface 7(47), 887–894 (2010).
[CrossRef] [PubMed]

Hoshino, T.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by moth eye principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Ishikawa, Y.

A. Saito, Y. Ishikawa, Y. Miyamura, M. Akai-Kasaya, and Y. Kuwahara, “Optimization of reproduced Morpho-blue coloration,” Proc. SPIE 6767, 676706 (2007).
[CrossRef]

Jin, Y.

K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[CrossRef] [PubMed]

Juodkazis, S.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnology 11(4), 2785–2792 (2011).
[CrossRef] [PubMed]

Kaito, T.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

Kambe, M.

M. Kambe, D. Zhu, and S. Kinoshita, “Origin of retroreflection from a wing of the Morpho butterfly,” J. Phys. Soc. Jpn. 80(5), 054801 (2011).
[CrossRef]

Kanda, K.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

Kawagoe, K.

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

Kertész, K.

I. Tamáska, Z. Vértesy, A. Deák, P. Petrik, K. Kertész, and L. P. Biró, “Optical properties of bioinspired disordered photonic nanoarchitectures,” Nanopages 8(2), 17–30 (2013).
[CrossRef]

L. P. Biró, K. Kertész, E. Horváth, G. I. Márk, G. Molnár, Z. Vértesy, J.-F. Tsai, A. Kun, Zs. Bálint, and J. P. Vigneron, “Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a ‘blueprint’,” J. R. Soc. Interface 7(47), 887–894 (2010).
[CrossRef] [PubMed]

Kinoshita, S.

M. Kambe, D. Zhu, and S. Kinoshita, “Origin of retroreflection from a wing of the Morpho butterfly,” J. Phys. Soc. Jpn. 80(5), 054801 (2011).
[CrossRef]

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051924 (2009).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc. Biol. Sci. 273(1583), 129–134 (2006).
[CrossRef] [PubMed]

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

A. Saito, S. Yoshioka, and S. Kinoshita, “Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors,” Proc. SPIE 5526, 188–194 (2004).
[CrossRef]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

Kun, A.

L. P. Biró, K. Kertész, E. Horváth, G. I. Márk, G. Molnár, Z. Vértesy, J.-F. Tsai, A. Kun, Zs. Bálint, and J. P. Vigneron, “Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a ‘blueprint’,” J. R. Soc. Interface 7(47), 887–894 (2010).
[CrossRef] [PubMed]

Kuwahara, Y.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnology 11(4), 2785–2792 (2011).
[CrossRef] [PubMed]

A. Saito, Y. Ishikawa, Y. Miyamura, M. Akai-Kasaya, and Y. Kuwahara, “Optimization of reproduced Morpho-blue coloration,” Proc. SPIE 6767, 676706 (2007).
[CrossRef]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Lee, H. S.

K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[CrossRef] [PubMed]

Lee, S. Y.

K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[CrossRef] [PubMed]

Leroy, F.

J. Boulenguez, S. Berthier, and F. Leroy, “Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly,” Appl. Phys., A Mater. Sci. Process. 106(4), 1005–1011 (2012).
[CrossRef]

Leuthold, J.

Márk, G. I.

L. P. Biró, K. Kertész, E. Horváth, G. I. Márk, G. Molnár, Z. Vértesy, J.-F. Tsai, A. Kun, Zs. Bálint, and J. P. Vigneron, “Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a ‘blueprint’,” J. R. Soc. Interface 7(47), 887–894 (2010).
[CrossRef] [PubMed]

Mason, C. W.

C. W. Mason, “Structural colors in insects. III,” J. Phys. Chem. 31(12), 1856–1872 (1927).
[CrossRef]

C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem. 31(3), 321–354 (1927).
[CrossRef]

C. W. Mason, “Structural colors in insects. I,” J. Phys. Chem. 30(3), 383–395 (1926).
[CrossRef]

Matsui, S.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

Meadows, M. G.

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6(Suppl 2), S115–S132 (2009).
[CrossRef] [PubMed]

Miyamura, Y.

A. Saito, Y. Ishikawa, Y. Miyamura, M. Akai-Kasaya, and Y. Kuwahara, “Optimization of reproduced Morpho-blue coloration,” Proc. SPIE 6767, 676706 (2007).
[CrossRef]

Miyazaki, J.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

Mizeikis, V.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnology 11(4), 2785–2792 (2011).
[CrossRef] [PubMed]

Molnár, G.

L. P. Biró, K. Kertész, E. Horváth, G. I. Márk, G. Molnár, Z. Vértesy, J.-F. Tsai, A. Kun, Zs. Bálint, and J. P. Vigneron, “Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a ‘blueprint’,” J. R. Soc. Interface 7(47), 887–894 (2010).
[CrossRef] [PubMed]

Morris, W. G.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[CrossRef]

Murase, J.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnology 11(4), 2785–2792 (2011).
[CrossRef] [PubMed]

Okamoto, N.

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

Olson, E.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[CrossRef]

Park, J. O.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

Park, N.

K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[CrossRef] [PubMed]

Petrik, P.

I. Tamáska, Z. Vértesy, A. Deák, P. Petrik, K. Kertész, and L. P. Biró, “Optical properties of bioinspired disordered photonic nanoarchitectures,” Nanopages 8(2), 17–30 (2013).
[CrossRef]

Pirih, P.

P. Pirih, B. D. Wilts, and D. G. Stavenga, “Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197(10), 987–997 (2011).
[CrossRef] [PubMed]

Potyrailo, R. A.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[CrossRef]

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[CrossRef]

Pris, A. D.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[CrossRef]

Saito, A.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnology 11(4), 2785–2792 (2011).
[CrossRef] [PubMed]

A. Saito, Y. Ishikawa, Y. Miyamura, M. Akai-Kasaya, and Y. Kuwahara, “Optimization of reproduced Morpho-blue coloration,” Proc. SPIE 6767, 676706 (2007).
[CrossRef]

A. Saito, S. Yoshioka, and S. Kinoshita, “Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors,” Proc. SPIE 5526, 188–194 (2004).
[CrossRef]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Scharber, M. C.

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

Sharma, V.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

Shim, J. W.

K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[CrossRef] [PubMed]

Shin, J. H.

K. Chung and J. H. Shin, “Range and stability of structural colors generated by Morpho-inspired color reflectors,” J. Opt. Soc. Am. A 30(5), 962–968 (2013).
[CrossRef] [PubMed]

K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[CrossRef] [PubMed]

Siddique, R. H.

Srinivasarao, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef] [PubMed]

Stavenga, D. G.

P. Pirih, B. D. Wilts, and D. G. Stavenga, “Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197(10), 987–997 (2011).
[CrossRef] [PubMed]

Surman, C.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[CrossRef]

Takeoka, Y.

Y. Takeoka, “Angle-independent structural coloured amorphous arrays,” J. Mater. Chem. 22(44), 23299 (2012).
[CrossRef]

Tamáska, I.

I. Tamáska, Z. Vértesy, A. Deák, P. Petrik, K. Kertész, and L. P. Biró, “Optical properties of bioinspired disordered photonic nanoarchitectures,” Nanopages 8(2), 17–30 (2013).
[CrossRef]

Tsai, J.-F.

L. P. Biró, K. Kertész, E. Horváth, G. I. Márk, G. Molnár, Z. Vértesy, J.-F. Tsai, A. Kun, Zs. Bálint, and J. P. Vigneron, “Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a ‘blueprint’,” J. R. Soc. Interface 7(47), 887–894 (2010).
[CrossRef] [PubMed]

Utturkar, Y.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[CrossRef]

Vert, A.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[CrossRef]

Vértesy, Z.

I. Tamáska, Z. Vértesy, A. Deák, P. Petrik, K. Kertész, and L. P. Biró, “Optical properties of bioinspired disordered photonic nanoarchitectures,” Nanopages 8(2), 17–30 (2013).
[CrossRef]

L. P. Biró, K. Kertész, E. Horváth, G. I. Márk, G. Molnár, Z. Vértesy, J.-F. Tsai, A. Kun, Zs. Bálint, and J. P. Vigneron, “Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a ‘blueprint’,” J. R. Soc. Interface 7(47), 887–894 (2010).
[CrossRef] [PubMed]

Vertiatchikh, A.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[CrossRef]

Vigneron, J. P.

L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5(1), 27–51 (2011).
[CrossRef]

L. P. Biró, K. Kertész, E. Horváth, G. I. Márk, G. Molnár, Z. Vértesy, J.-F. Tsai, A. Kun, Zs. Bálint, and J. P. Vigneron, “Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a ‘blueprint’,” J. R. Soc. Interface 7(47), 887–894 (2010).
[CrossRef] [PubMed]

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Watanabe, K.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

Wilts, B. D.

P. Pirih, B. D. Wilts, and D. G. Stavenga, “Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197(10), 987–997 (2011).
[CrossRef] [PubMed]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

Wu, G.

D. Ge, L. Yang, G. Wu, and S. Yang, “Spray coating of superhydrophobic and angle-independent coloured films,” Chem. Commun. 50(19), 2469–2472 (2014).
[CrossRef] [PubMed]

Yang, L.

D. Ge, L. Yang, G. Wu, and S. Yang, “Spray coating of superhydrophobic and angle-independent coloured films,” Chem. Commun. 50(19), 2469–2472 (2014).
[CrossRef] [PubMed]

Yang, S.

D. Ge, L. Yang, G. Wu, and S. Yang, “Spray coating of superhydrophobic and angle-independent coloured films,” Chem. Commun. 50(19), 2469–2472 (2014).
[CrossRef] [PubMed]

Yang, S. M.

K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[CrossRef] [PubMed]

Yonezawa, M.

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnology 11(4), 2785–2792 (2011).
[CrossRef] [PubMed]

Yoshioka, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc. Biol. Sci. 273(1583), 129–134 (2006).
[CrossRef] [PubMed]

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

A. Saito, S. Yoshioka, and S. Kinoshita, “Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors,” Proc. SPIE 5526, 188–194 (2004).
[CrossRef]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

Yu, S.

K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[CrossRef] [PubMed]

Zalyubovskiy, S.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[CrossRef]

Zhu, D.

M. Kambe, D. Zhu, and S. Kinoshita, “Origin of retroreflection from a wing of the Morpho butterfly,” J. Phys. Soc. Jpn. 80(5), 054801 (2011).
[CrossRef]

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051924 (2009).
[CrossRef] [PubMed]

Adv. Mater. (1)

K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

J. Boulenguez, S. Berthier, and F. Leroy, “Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly,” Appl. Phys., A Mater. Sci. Process. 106(4), 1005–1011 (2012).
[CrossRef]

Chem. Commun. (1)

D. Ge, L. Yang, G. Wu, and S. Yang, “Spray coating of superhydrophobic and angle-independent coloured films,” Chem. Commun. 50(19), 2469–2472 (2014).
[CrossRef] [PubMed]

Chem. Rev. (1)

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[CrossRef] [PubMed]

ChemPhysChem (1)

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

Forma (1)

S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma 17, 103–121 (2002).

J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. (1)

P. Pirih, B. D. Wilts, and D. G. Stavenga, “Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197(10), 987–997 (2011).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

Y. Takeoka, “Angle-independent structural coloured amorphous arrays,” J. Mater. Chem. 22(44), 23299 (2012).
[CrossRef]

J. Nanosci. Nanotechnology (1)

A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnology 11(4), 2785–2792 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (3)

C. W. Mason, “Structural colors in insects. I,” J. Phys. Chem. 30(3), 383–395 (1926).
[CrossRef]

C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem. 31(3), 321–354 (1927).
[CrossRef]

C. W. Mason, “Structural colors in insects. III,” J. Phys. Chem. 31(12), 1856–1872 (1927).
[CrossRef]

J. Phys. Soc. Jpn. (1)

M. Kambe, D. Zhu, and S. Kinoshita, “Origin of retroreflection from a wing of the Morpho butterfly,” J. Phys. Soc. Jpn. 80(5), 054801 (2011).
[CrossRef]

J. R. Soc. Interface (2)

L. P. Biró, K. Kertész, E. Horváth, G. I. Márk, G. Molnár, Z. Vértesy, J.-F. Tsai, A. Kun, Zs. Bálint, and J. P. Vigneron, “Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a ‘blueprint’,” J. R. Soc. Interface 7(47), 887–894 (2010).
[CrossRef] [PubMed]

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6(Suppl 2), S115–S132 (2009).
[CrossRef] [PubMed]

J. Vac. Sci. Technol. B (1)

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005).
[CrossRef]

Laser Photon. Rev. (1)

L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5(1), 27–51 (2011).
[CrossRef]

Nanopages (1)

I. Tamáska, Z. Vértesy, A. Deák, P. Petrik, K. Kertész, and L. P. Biró, “Optical properties of bioinspired disordered photonic nanoarchitectures,” Nanopages 8(2), 17–30 (2013).
[CrossRef]

Nat. Photon. (2)

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[CrossRef]

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[CrossRef]

Nature (2)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by moth eye principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051924 (2009).
[CrossRef] [PubMed]

Proc. Biol. Sci. (3)

S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc. Biol. Sci. 273(1583), 129–134 (2006).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).
[CrossRef]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

Proc. SPIE (2)

A. Saito, Y. Ishikawa, Y. Miyamura, M. Akai-Kasaya, and Y. Kuwahara, “Optimization of reproduced Morpho-blue coloration,” Proc. SPIE 6767, 676706 (2007).
[CrossRef]

A. Saito, S. Yoshioka, and S. Kinoshita, “Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors,” Proc. SPIE 5526, 188–194 (2004).
[CrossRef]

Rep. Prog. Phys. (1)

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

Science (1)

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[CrossRef] [PubMed]

Thin Solid Films (1)

K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films 516(20), 7167–7170 (2008).
[CrossRef]

Other (4)

E. Iwase, K. Matsumoto, and I. Shimoyama, “The structural-color based on the mechanism butterfly wing coloring for wide viewing angle reflective display,” in Proceedings of 17th IEEE international conference on MEMS (Maastricht Exhibition and Convention Centre, Maastricht, 2004), pp. 105–108.
[CrossRef]

S. Berthier, Photonique de Morphos (Springer, 2010).

S. Berthier, Iridescences: The Physical Colors of Insects (Springer, 2007).

J. B. Schneider, “Understanding the FDTD method” (2010), www.eecs.wsu.edu/~schneidj/ufdtd .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

A schematic description of the fabrication process.

Fig. 2
Fig. 2

Structural analysis of disorder-controlled substrate. Cross-section SEM image (10 o-tilted) of (a) monolayer of randomly sized silica microspheres on the Si substrate (substrate s1), (b) etched Si substrate with SiO2/Si etching selectivity of 1 (substrate s2), (c) with etching selectivity 2 (substrate s3), and (d) with etching selectivity 3 (substrate s4). (e) Vertical height distribution of the substrates s1 - s4, as measured by SEM and AFM. The black arrows in inset indicate vertical height measured. (f) The horizontal distance distribution of the substrates s1 - s4 as measured by SEM and AFM. The black arrow in inset indicates horizontal distance measured. Scale bars, 1μm.

Fig. 3
Fig. 3

A schematic view of measurement setup for angular reflectance.

Fig. 4
Fig. 4

Images and normal reflectance. (a) Optical images of the wing of Morpho didius, the wing of Morpho rhetenor, a wrinkled multilayer film deposited on s1 unfixed to the Si substrate (defined as f0), a flat multilayer film deposited on s1 fixed to the Si substrate (defined as f1), flat multilayer films deposited on s2 - s4 (defined as f2 - f4) from left to right. (b) Cross-sectional SEM image of multilayered ridges on the scale of Morpho rhetenor butterfly. (c) Cross-sectional SEM image of the deposited multilayer films on microspheres. (d) Cross-sectional SEM image of the deposited multilayer films on the etched Si substrate f3. (e) Normal reflectance spectra, normalized to the max value, of the deposited multilayer films f0 - f4. Inset: Corresponding color coordinates on the 1931 CIE diagram. Scale bars, 1μm.

Fig. 5
Fig. 5

Angular reflectance. (a-c) Angular distribution of reflectance of Morpho didius at incident angle of 0 o (a), 30 o (b), 60 o (c) measured at wavelength of 460 nm. The ridges of Morpho butterflies were set to be parallel to the plane of incidence as seen in Fig. 3. Inset: two-dimensional polar plot. Red dots indicate the source positions. Shaded regions indicate regions where no data could be collected due to limitations of the measurement setup limit. (d-f) Corresponding data for Morpho rhetenor.

Fig. 6
Fig. 6

Angular reflectance. (a-c) Angular distribution of reflectance of f0 at incident angle of 0 o (a), 30 o (b), 60 o (c) measured at wavelength of 460 nm. Inset: two-dimensional polar plot. Red dots indicate the source positions. Shaded regions indicate regions where no data could be collected due to limitations of the measurement setup limit. (d-f) Corresponding data for f1.

Fig. 7
Fig. 7

Angular reflectance. (a-c) Angular distribution of reflectance of f2 at incident angle of 0 o (a), 30 o (b), 60 o (c) measured at wavelength of 460 nm. Inset: two-dimensional polar plot. Red dots indicate the source positions. Shaded regions indicate regions where no data could be collected due to limitations of the measurement setup limit. (d-f) Corresponding data for f3.

Fig. 8
Fig. 8

Angular reflectance. (a-c) Angular distribution of reflectance of f4 at incident angle of 0 o (a), 30 o (b), 60 o (c) measured at wavelength of 460 nm. Inset: two-dimensional polar plot. Red dots indicate the source positions. Shaded regions indicate regions where no data could be collected due to limitations of the measurement setup limit. (d-f) Angular distribution of reflectance of f0 - f4 on the plane of incidence at incident angle of 0 o (d), 30 o (e), 60 o (f). Inset: Plot with larger scale. All reflectance data were measured at 460nm wavelength.

Fig. 9
Fig. 9

A schematic view of simulation method.

Fig. 10
Fig. 10

Calculated far-field reflection intensities of (a) continuous multilayer structures deposited on a layer of uniformly sized microspheres of diameter 350 nm; (b) continuous multilayer structure with half of the random offsets of sample f1 in Fig. 4; (c) continuous multilayer with the same random offsets as sample f1 in Fig. 4. (d-f) Calculated far-field reflection intensities of structures designed by applying 300 nm gap spacing to the structures in (a)-(c). Schematic views of structure are on top. All calculation were performed under normal incident light. Insets: Plot with larger scale.

Fig. 11
Fig. 11

The effect of structural parameter. Calculated far-field reflection intensities of 300 nm gap-applied uniform (the structure in Fig. 10(d)) and random (the structure in Fig. 10(f)) structure with changing (a-b) the number of multilayer pairs under normal incident light; (c-d) the gap spacing between the neighboring elements under normal incident light; (e-f) the incident angle, at wavelength of 460 nm. (g-i) The dependence of total far-field reflection intensities upon each parameter . All calculations were performed at 460nm wavelength.

Tables (1)

Tables Icon

Table 1 The statistical values of nanoscale offsets of the substrates in Fig. 2.

Metrics