Abstract

This paper discusses circuit based and waveguide based athermalization schemes and provides some design examples of athermalized lasers utilizing fully integrated athermal components as an alternative to power hungry thermo-electric controllers (TECs), off-chip wavelength lockers or monitors with lookup tables for tunable lasers. This class of solutions is important for uncooled transmitters on silicon.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A temperature insensitive InGaAsP-InP optical filter,” IEEE Photon. Technol. Lett. 8(11), 1489–1491 (1996).
    [CrossRef]
  2. H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett. 10(2), 235–237 (1998).
    [CrossRef]
  3. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [CrossRef] [PubMed]
  4. J. Bovington, R. Wu, K. T. K.-T. Cheng, and J. E. J. E. Bowers, “Thermal stress implications in athermal TiO2 waveguides on a silicon substrate,” Opt. Express 22(1), 661–666 (2014).
    [CrossRef] [PubMed]
  5. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
    [CrossRef] [PubMed]
  6. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
    [CrossRef] [PubMed]
  7. D. Bosc, B. Loisel, M. Moisan, N. Devoldere, F. Legall, and A. Rolland, “Temperature and polarisation insensitive Bragg gratings realised on silica waveguide on silicon,” Electron. Lett. 33(2), 134–136 (1997).
    [CrossRef]
  8. R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
    [CrossRef]
  9. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
    [CrossRef]
  10. M. T. Crowley, GaAs based Quantum Dot Lasers, Semiconductors and Semimetals: Advances in Semiconductor Lasers, 86, (2012).
  11. D. A. Cohen, M. E. Heimbuch, and L. A. Coldren, “Reduced temperature sensitivity of the wavelength of a diode laser in a stress-engineered hydrostatic package,” Appl. Phys. Lett. 69(4), 455 (1996).
    [CrossRef]
  12. A. Phillips, R. Penty, and I. White, “Integrated passive wavelength athermalisation for vertical-cavity semiconductor laser diodes,” Optoelectron. IEEE Proc., 152(3), (2005).
    [CrossRef]
  13. H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
    [CrossRef]
  14. B. Liu, A. Shakouri, and J. E. Bowers, “Passive microring-resonator-coupled lasers,” Appl. Phys. Lett. 79(22), 3561 (2001).
    [CrossRef]

2014 (2)

J. Bovington, R. Wu, K. T. K.-T. Cheng, and J. E. J. E. Bowers, “Thermal stress implications in athermal TiO2 waveguides on a silicon substrate,” Opt. Express 22(1), 661–666 (2014).
[CrossRef] [PubMed]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

2013 (2)

2011 (1)

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

2009 (1)

2007 (1)

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

2001 (1)

B. Liu, A. Shakouri, and J. E. Bowers, “Passive microring-resonator-coupled lasers,” Appl. Phys. Lett. 79(22), 3561 (2001).
[CrossRef]

1998 (1)

H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett. 10(2), 235–237 (1998).
[CrossRef]

1997 (1)

D. Bosc, B. Loisel, M. Moisan, N. Devoldere, F. Legall, and A. Rolland, “Temperature and polarisation insensitive Bragg gratings realised on silica waveguide on silicon,” Electron. Lett. 33(2), 134–136 (1997).
[CrossRef]

1996 (2)

H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A temperature insensitive InGaAsP-InP optical filter,” IEEE Photon. Technol. Lett. 8(11), 1489–1491 (1996).
[CrossRef]

D. A. Cohen, M. E. Heimbuch, and L. A. Coldren, “Reduced temperature sensitivity of the wavelength of a diode laser in a stress-engineered hydrostatic package,” Appl. Phys. Lett. 69(4), 455 (1996).
[CrossRef]

Agarwal, H.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Alexander, R. R.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Arakawa, Y.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Badcock, T. J.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Baets, R.

Basak, J.

Bogaerts, W.

Bosc, D.

D. Bosc, B. Loisel, M. Moisan, N. Devoldere, F. Legall, and A. Rolland, “Temperature and polarisation insensitive Bragg gratings realised on silica waveguide on silicon,” Electron. Lett. 33(2), 134–136 (1997).
[CrossRef]

Bovington, J.

J. Bovington, R. Wu, K. T. K.-T. Cheng, and J. E. J. E. Bowers, “Thermal stress implications in athermal TiO2 waveguides on a silicon substrate,” Opt. Express 22(1), 661–666 (2014).
[CrossRef] [PubMed]

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Bowers, J. E.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

B. Liu, A. Shakouri, and J. E. Bowers, “Passive microring-resonator-coupled lasers,” Appl. Phys. Lett. 79(22), 3561 (2001).
[CrossRef]

Bowers, J. E. J. E.

Cardenas, J.

Chen, H.

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Cheng, K. T. K.-T.

Cheung, S. T. S.

Childs, D. T. D.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Cohen, D. A.

D. A. Cohen, M. E. Heimbuch, and L. A. Coldren, “Reduced temperature sensitivity of the wavelength of a diode laser in a stress-engineered hydrostatic package,” Appl. Phys. Lett. 69(4), 455 (1996).
[CrossRef]

Coldren, L. A.

D. A. Cohen, M. E. Heimbuch, and L. A. Coldren, “Reduced temperature sensitivity of the wavelength of a diode laser in a stress-engineered hydrostatic package,” Appl. Phys. Lett. 69(4), 455 (1996).
[CrossRef]

Devoldere, N.

D. Bosc, B. Loisel, M. Moisan, N. Devoldere, F. Legall, and A. Rolland, “Temperature and polarisation insensitive Bragg gratings realised on silica waveguide on silicon,” Electron. Lett. 33(2), 134–136 (1997).
[CrossRef]

Djordjevic, S. S.

Dumon, P.

Fang, A. W.

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

Gossard, A. C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

Groom, K. M.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Guan, B.

Guha, B.

Han, X.

Heimbuch, M. E.

D. A. Cohen, M. E. Heimbuch, and L. A. Coldren, “Reduced temperature sensitivity of the wavelength of a diode laser in a stress-engineered hydrostatic package,” Appl. Phys. Lett. 69(4), 455 (1996).
[CrossRef]

Hogg, R. A.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Hopkinson, M.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Ishida, M.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Jacob-Mitos, M.

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Jian, X.

Jones, R.

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Kadota, Y.

H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett. 10(2), 235–237 (1998).
[CrossRef]

H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A temperature insensitive InGaAsP-InP optical filter,” IEEE Photon. Technol. Lett. 8(11), 1489–1491 (1996).
[CrossRef]

Koch, B. R.

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Kondo, Y.

H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett. 10(2), 235–237 (1998).
[CrossRef]

H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A temperature insensitive InGaAsP-InP optical filter,” IEEE Photon. Technol. Lett. 8(11), 1489–1491 (1996).
[CrossRef]

Legall, F.

D. Bosc, B. Loisel, M. Moisan, N. Devoldere, F. Legall, and A. Rolland, “Temperature and polarisation insensitive Bragg gratings realised on silica waveguide on silicon,” Electron. Lett. 33(2), 134–136 (1997).
[CrossRef]

Liang, D.

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Liao, L.

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[CrossRef] [PubMed]

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Lipson, M.

Liu, A. W. K.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

Liu, A. Y.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

Liu, B.

B. Liu, A. Shakouri, and J. E. Bowers, “Passive microring-resonator-coupled lasers,” Appl. Phys. Lett. 79(22), 3561 (2001).
[CrossRef]

Liu, H.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Liu, H.-F.

Loisel, B.

D. Bosc, B. Loisel, M. Moisan, N. Devoldere, F. Legall, and A. Rolland, “Temperature and polarisation insensitive Bragg gratings realised on silica waveguide on silicon,” Electron. Lett. 33(2), 134–136 (1997).
[CrossRef]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

Member, S.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Moisan, M.

D. Bosc, B. Loisel, M. Moisan, N. Devoldere, F. Legall, and A. Rolland, “Temperature and polarisation insensitive Bragg gratings realised on silica waveguide on silicon,” Electron. Lett. 33(2), 134–136 (1997).
[CrossRef]

Morthier, G.

Mowbray, D. J.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Norman, J.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

Okamoto, K.

H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett. 10(2), 235–237 (1998).
[CrossRef]

Park, H.

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Rolland, A.

D. Bosc, B. Loisel, M. Moisan, N. Devoldere, F. Legall, and A. Rolland, “Temperature and polarisation insensitive Bragg gratings realised on silica waveguide on silicon,” Electron. Lett. 33(2), 134–136 (1997).
[CrossRef]

Royce, R. J.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Shakouri, A.

B. Liu, A. Shakouri, and J. E. Bowers, “Passive microring-resonator-coupled lasers,” Appl. Phys. Lett. 79(22), 3561 (2001).
[CrossRef]

Shang, K.

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

Sugawara, M.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Sysak, M.

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Tang, Y.

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Tanobe, H.

H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett. 10(2), 235–237 (1998).
[CrossRef]

H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A temperature insensitive InGaAsP-InP optical filter,” IEEE Photon. Technol. Lett. 8(11), 1489–1491 (1996).
[CrossRef]

Teng, J.

Wong, K.

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Wu, R.

Yamamoto, T.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

Yasaka, H.

H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A temperature insensitive InGaAsP-InP optical filter,” IEEE Photon. Technol. Lett. 8(11), 1489–1491 (1996).
[CrossRef]

Yoo, S. J. B.

Yoshikuni, Y.

H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett. 10(2), 235–237 (1998).
[CrossRef]

H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A temperature insensitive InGaAsP-InP optical filter,” IEEE Photon. Technol. Lett. 8(11), 1489–1491 (1996).
[CrossRef]

Zhang, C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

Zhang, H.

Zhao, M.

Appl. Phys. Lett. (3)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[CrossRef]

D. A. Cohen, M. E. Heimbuch, and L. A. Coldren, “Reduced temperature sensitivity of the wavelength of a diode laser in a stress-engineered hydrostatic package,” Appl. Phys. Lett. 69(4), 455 (1996).
[CrossRef]

B. Liu, A. Shakouri, and J. E. Bowers, “Passive microring-resonator-coupled lasers,” Appl. Phys. Lett. 79(22), 3561 (2001).
[CrossRef]

Electron. Lett. (1)

D. Bosc, B. Loisel, M. Moisan, N. Devoldere, F. Legall, and A. Rolland, “Temperature and polarisation insensitive Bragg gratings realised on silica waveguide on silicon,” Electron. Lett. 33(2), 134–136 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, S. Member, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Park, M. Sysak, H. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A temperature insensitive InGaAsP-InP optical filter,” IEEE Photon. Technol. Lett. 8(11), 1489–1491 (1996).
[CrossRef]

H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett. 10(2), 235–237 (1998).
[CrossRef]

Opt. Express (4)

Other (2)

M. T. Crowley, GaAs based Quantum Dot Lasers, Semiconductors and Semimetals: Advances in Semiconductor Lasers, 86, (2012).

A. Phillips, R. Penty, and I. White, “Integrated passive wavelength athermalisation for vertical-cavity semiconductor laser diodes,” Optoelectron. IEEE Proc., 152(3), (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Normalized spectral efficiency v. channel spacing for various higher order modulations assuming a linearly proportional model.

Fig. 2
Fig. 2

(a-c) Three FIR filters whose response can be made less sensitive to temperature variation by using two waveguide types (shown in red and black) each with a different thermo-optic coefficient. (d) Vector representation of effective path length for circuit (a) showing the principle whereby the phase difference of the paths is constant with temperature (T and T’).

Fig. 3
Fig. 3

(a) Diagram of typical in-plane semiconductor laser with dense cavity modes where thermal drift is typically dominated by cavity loss. (b) A similar DBR laser design with and intra-cavity ring filter to achieve a narrower reflectivity bandwidth.

Fig. 4
Fig. 4

(a) Passively Athermal DBR Laser (b) Athermal Ring Filtered DBR (ARF-DBR) Laser (c) cross section of III-V/Si Hybrid SOA or PD with TiO2 cladding. (d) cross section of Si waveguide clad with TiO2 for a thermal compensator.

Fig. 5
Fig. 5

Athermal DBR laser drift in pm/K vs. the length of a thermal compensator waveguide as a function of (a) different passive compensator drifts dnp/dT and (b) athermal grating strengths κDBR. Hybrid silicon gain region length assumed to be 200µm with compensator made of a Si core with TiO2 cladding, and 250µm combined grating length for front and back. (a) assume κDBR = 300cm−1, (b) assumes dnp/dT = −3 × 10−5K−1.

Fig. 6
Fig. 6

(a) Drop port insertion loss in dB of a ring filter (i.e. from the SOA to the rear mirror in Fig. 4(a). (b) Through port insertion loss in dB (i.e. from the SOA to the P-PD in Fig. 4(a). Assumes 1dB/cm propagation loss, 25µm ring radius.

Fig. 7
Fig. 7

(a) Schematic of an integrated transmitter with on-chip wavelength locker utilizing a quarter wavelength shifted DBR as a filter to an integrated monitor photodiode. This is co-packed with the control electronics. (b) the transmission of the wavelength locker filter concept is plotted with a slight wavelength dither on the high slope and lowest reflection of the filter notch caused by the λ/4 shift.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d λ r dT λ r n g ( n eff α sub + n eff T )
where, n eff T k Γ k n k T .
d λ Bragg dT 1 m λ Bragg n g1 + n g2 [ ( n eff1 + n eff2 ) α sub + d n eff1 dT + d n eff2 dT ]
d λ C dT λ C L c n g dL ( α sub L c n eff dL + L c d n eff dT dL )
d L eff dT α sub L g 2 sech 2 ( 2δ L g λ 0 ) L g δ dδ dT ( 1 λ 0 2δ L g tanh( 2δ L g λ 0 ) )

Metrics