Abstract

A fiber laser using a thulium-doped ZBLAN gain medium was used to generate laser radiation simultaneously at 1461, 1505 and 1874 nm, with > 5 mW output power at each of the wavelengths. The laser was used to quantify the near-infrared absorption of liquid water in acetone. Additionally, near-infrared spectra were recorded using a broad band source and were interpreted using parallel factor (PARAFAC) analysis to rationalize the concentration-dependent peak shifts.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
    [CrossRef]
  2. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photon. 6(7), 423–431 (2012).
    [CrossRef]
  3. N. J. Scott, C. M. Cilip, and N. M. Fried, “Thulium fiber laser ablation of urinary stones through small-core optical fibers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 435–440 (2009).
    [CrossRef]
  4. M. Güney, B. Tunc, and M. Gulsoy, “Incisional effects of 1940 nm thulium fiber laser on oral soft tissues,” Proc. SPIE 8584, 848408 (2013).
  5. B. Tunc and M. Gulsoy, “Tm:fiber laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: ex vivo dosimetry for ovine brain,” Lasers Surg. Med. 45(1), 48–56 (2013).
    [CrossRef] [PubMed]
  6. N. M. Fried, “Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 mu m,” Lasers Surg. Med. 37(1), 53–58 (2005).
    [CrossRef] [PubMed]
  7. N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
    [CrossRef] [PubMed]
  8. M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2-microm fiber laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 25(5), 407–413 (1999).
    [CrossRef] [PubMed]
  9. P. Peterka, I. Kasik, A. Dhar, B. Dussardier, and W. Blanc, “Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime,” Opt. Express 19(3), 2773–2781 (2011).
    [CrossRef] [PubMed]
  10. C. Xia, “Mid-infrared supercontinuum laser system and its biomedical applications,” Ph.D. Dissertation (University of Michigan, Ann Arbor, 2009).
  11. G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “784-nm amplified spontaneous emission from Tm3+-doped fluoride glass fiber pumped by an 1120-nm fiber laser,” Opt. Lett. 30(3), 269–271 (2005).
    [CrossRef] [PubMed]
  12. G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17(9), 1818–1820 (2005).
    [CrossRef]
  13. G. Androz, D. Faucher, D. Gingras, and R. Vallée, “Self-pulsing dynamics of a dual-wavelength Tm3+:ZBLAN upconversion fiber laser emitting around 800 nm,” J. Opt. Soc. Am. B 24(11), 2907–2913 (2007).
    [CrossRef]
  14. B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, S. Thomas, P. Long, and M. Saad, “Dual-wavelength lasing around 800 nm in a Tm:ZBLAN fibre laser,” in IEEE Photonics Conference, (2012), pp. 668–669.
    [CrossRef]
  15. B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49(1), 60–62 (2013).
    [CrossRef]
  16. K. Ramaswamy, C. Jia, M. Dastmalchi, L. R. Chen, and M. Saad, “Dual-band 810/1480 nm Tm3+:ZBLAN fiber laser,” in IEEE Photonics Conference (2013), pp. 273–274.
  17. W. J. Peng, F. P. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, and S. C. Feng, “1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
    [CrossRef] [PubMed]
  18. J. J. Max and C. Chapados, “Infrared spectroscopy of acetone-water liquid mixtures. II. Molecular model,” J. Chem. Phys. 120(14), 6625–6641 (2004).
    [CrossRef] [PubMed]
  19. J. J. Max and C. Chapados, “Infrared spectroscopy of acetone-water liquid mixtures. I. Factor analysis,” J. Chem. Phys. 119(11), 5632–5643 (2003).
    [CrossRef]
  20. Y. Koga, F. Sebe, T. Minami, K. Otake, K. Saitow, and K. Nishikawa, “Spectrum of excess partial molar absorptivity. I. Near infrared spectroscopic study of aqueous acetonitrile and acetone,” J. Phys. Chem. B 113(35), 11928–11935 (2009).
    [CrossRef] [PubMed]
  21. A. Estrada-Baltazar, A. De Leon-Rodriguez, K. R. Hall, M. Ramos-Estrada, and G. A. Iglesias-Silva, “Experimental densities and excess volumes for binary mixtures containing propionic acid, acetone, and water from 283.15 K to 323.15 K at atmospheric pressure,” J. Chem. Eng. Data 48(6), 1425–1431 (2003).
    [CrossRef]
  22. L. Bøje and A. Hvidt, “Densities of aqueous mixtures of non-electrolytes,” J. Chem. Thermodyn. 3(5), 663–673 (1971).
    [CrossRef]
  23. K. Noda, M. Ohashi, and K. Ishida, “Viscosities and densities at 298.15 K for mixtures of methanol, acetone, and water,” J. Chem. Eng. Data 27(3), 326–328 (1982).
    [CrossRef]
  24. S. L. Pan, C. Y. Lou, and Y. Z. Gao, “Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter,” Opt. Express 14(3), 1113–1118 (2006).
    [CrossRef] [PubMed]
  25. J. E. Bertie and Z. D. Lan, “Infrared intensities of liquids. 20. The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O at 25 degrees °C between 15,000 and 1 cm−1,” Appl. Spectrosc. 50, 1047–1057 (1996).
    [CrossRef]
  26. B. Dickens and S. H. Dickens, “Estimation of concentration and bonding environment of water dissolved in common solvents using near infrared absorptivity,” J. Res. Natl. Inst. Stand. 104(2), 173–183 (1999).
    [CrossRef]
  27. B. Czarnik-Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vib. Spectrosc. 40(2), 235–245 (2006).
    [CrossRef]
  28. B. Czarnik-Matusewicz, S. Pilorz, and J. P. Hawranek, “Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy,” Anal. Chim. Acta 544(1–2), 15–25 (2005).
    [CrossRef]
  29. K. R. Murphy, C. A. Stedmon, D. Graeber, and R. Bro, “Fluorescence spectroscopy and multi-way techniques. PARAFAC,” Anal. Methods 5(23), 6557–6566 (2013).
    [CrossRef]
  30. R. Bro and H. A. L. Kiers, “A new efficient method for determining the number of components in PARAFAC models,” J. Chemometr. 17(5), 274–286 (2003).
    [CrossRef]
  31. H. P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Act., Biol. Chem. 173, 157–163 (2012).

2013

M. Güney, B. Tunc, and M. Gulsoy, “Incisional effects of 1940 nm thulium fiber laser on oral soft tissues,” Proc. SPIE 8584, 848408 (2013).

B. Tunc and M. Gulsoy, “Tm:fiber laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: ex vivo dosimetry for ovine brain,” Lasers Surg. Med. 45(1), 48–56 (2013).
[CrossRef] [PubMed]

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49(1), 60–62 (2013).
[CrossRef]

K. R. Murphy, C. A. Stedmon, D. Graeber, and R. Bro, “Fluorescence spectroscopy and multi-way techniques. PARAFAC,” Anal. Methods 5(23), 6557–6566 (2013).
[CrossRef]

W. J. Peng, F. P. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, and S. C. Feng, “1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
[CrossRef] [PubMed]

2012

H. P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Act., Biol. Chem. 173, 157–163 (2012).

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photon. 6(7), 423–431 (2012).
[CrossRef]

2011

2009

N. J. Scott, C. M. Cilip, and N. M. Fried, “Thulium fiber laser ablation of urinary stones through small-core optical fibers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 435–440 (2009).
[CrossRef]

Y. Koga, F. Sebe, T. Minami, K. Otake, K. Saitow, and K. Nishikawa, “Spectrum of excess partial molar absorptivity. I. Near infrared spectroscopic study of aqueous acetonitrile and acetone,” J. Phys. Chem. B 113(35), 11928–11935 (2009).
[CrossRef] [PubMed]

2007

2006

S. L. Pan, C. Y. Lou, and Y. Z. Gao, “Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter,” Opt. Express 14(3), 1113–1118 (2006).
[CrossRef] [PubMed]

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[CrossRef]

B. Czarnik-Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vib. Spectrosc. 40(2), 235–245 (2006).
[CrossRef]

2005

B. Czarnik-Matusewicz, S. Pilorz, and J. P. Hawranek, “Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy,” Anal. Chim. Acta 544(1–2), 15–25 (2005).
[CrossRef]

N. M. Fried, “Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 mu m,” Lasers Surg. Med. 37(1), 53–58 (2005).
[CrossRef] [PubMed]

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
[CrossRef] [PubMed]

G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17(9), 1818–1820 (2005).
[CrossRef]

G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “784-nm amplified spontaneous emission from Tm3+-doped fluoride glass fiber pumped by an 1120-nm fiber laser,” Opt. Lett. 30(3), 269–271 (2005).
[CrossRef] [PubMed]

2004

J. J. Max and C. Chapados, “Infrared spectroscopy of acetone-water liquid mixtures. II. Molecular model,” J. Chem. Phys. 120(14), 6625–6641 (2004).
[CrossRef] [PubMed]

2003

J. J. Max and C. Chapados, “Infrared spectroscopy of acetone-water liquid mixtures. I. Factor analysis,” J. Chem. Phys. 119(11), 5632–5643 (2003).
[CrossRef]

A. Estrada-Baltazar, A. De Leon-Rodriguez, K. R. Hall, M. Ramos-Estrada, and G. A. Iglesias-Silva, “Experimental densities and excess volumes for binary mixtures containing propionic acid, acetone, and water from 283.15 K to 323.15 K at atmospheric pressure,” J. Chem. Eng. Data 48(6), 1425–1431 (2003).
[CrossRef]

R. Bro and H. A. L. Kiers, “A new efficient method for determining the number of components in PARAFAC models,” J. Chemometr. 17(5), 274–286 (2003).
[CrossRef]

1999

B. Dickens and S. H. Dickens, “Estimation of concentration and bonding environment of water dissolved in common solvents using near infrared absorptivity,” J. Res. Natl. Inst. Stand. 104(2), 173–183 (1999).
[CrossRef]

M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2-microm fiber laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 25(5), 407–413 (1999).
[CrossRef] [PubMed]

1996

1982

K. Noda, M. Ohashi, and K. Ishida, “Viscosities and densities at 298.15 K for mixtures of methanol, acetone, and water,” J. Chem. Eng. Data 27(3), 326–328 (1982).
[CrossRef]

1971

L. Bøje and A. Hvidt, “Densities of aqueous mixtures of non-electrolytes,” J. Chem. Thermodyn. 3(5), 663–673 (1971).
[CrossRef]

Androz, G.

Bertie, J. E.

Blanc, W.

Bøje, L.

L. Bøje and A. Hvidt, “Densities of aqueous mixtures of non-electrolytes,” J. Chem. Thermodyn. 3(5), 663–673 (1971).
[CrossRef]

Bro, R.

K. R. Murphy, C. A. Stedmon, D. Graeber, and R. Bro, “Fluorescence spectroscopy and multi-way techniques. PARAFAC,” Anal. Methods 5(23), 6557–6566 (2013).
[CrossRef]

R. Bro and H. A. L. Kiers, “A new efficient method for determining the number of components in PARAFAC models,” J. Chemometr. 17(5), 274–286 (2003).
[CrossRef]

Chapados, C.

J. J. Max and C. Chapados, “Infrared spectroscopy of acetone-water liquid mixtures. II. Molecular model,” J. Chem. Phys. 120(14), 6625–6641 (2004).
[CrossRef] [PubMed]

J. J. Max and C. Chapados, “Infrared spectroscopy of acetone-water liquid mixtures. I. Factor analysis,” J. Chem. Phys. 119(11), 5632–5643 (2003).
[CrossRef]

Chen, L. R.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49(1), 60–62 (2013).
[CrossRef]

K. Ramaswamy, C. Jia, M. Dastmalchi, L. R. Chen, and M. Saad, “Dual-band 810/1480 nm Tm3+:ZBLAN fiber laser,” in IEEE Photonics Conference (2013), pp. 273–274.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, S. Thomas, P. Long, and M. Saad, “Dual-wavelength lasing around 800 nm in a Tm:ZBLAN fibre laser,” in IEEE Photonics Conference, (2012), pp. 668–669.
[CrossRef]

Cilip, C. M.

N. J. Scott, C. M. Cilip, and N. M. Fried, “Thulium fiber laser ablation of urinary stones through small-core optical fibers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 435–440 (2009).
[CrossRef]

Czarnik-Matusewicz, B.

B. Czarnik-Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vib. Spectrosc. 40(2), 235–245 (2006).
[CrossRef]

B. Czarnik-Matusewicz, S. Pilorz, and J. P. Hawranek, “Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy,” Anal. Chim. Acta 544(1–2), 15–25 (2005).
[CrossRef]

Dastmalchi, M.

K. Ramaswamy, C. Jia, M. Dastmalchi, L. R. Chen, and M. Saad, “Dual-band 810/1480 nm Tm3+:ZBLAN fiber laser,” in IEEE Photonics Conference (2013), pp. 273–274.

De Leon-Rodriguez, A.

A. Estrada-Baltazar, A. De Leon-Rodriguez, K. R. Hall, M. Ramos-Estrada, and G. A. Iglesias-Silva, “Experimental densities and excess volumes for binary mixtures containing propionic acid, acetone, and water from 283.15 K to 323.15 K at atmospheric pressure,” J. Chem. Eng. Data 48(6), 1425–1431 (2003).
[CrossRef]

Dhar, A.

Dickens, B.

B. Dickens and S. H. Dickens, “Estimation of concentration and bonding environment of water dissolved in common solvents using near infrared absorptivity,” J. Res. Natl. Inst. Stand. 104(2), 173–183 (1999).
[CrossRef]

Dickens, S. H.

B. Dickens and S. H. Dickens, “Estimation of concentration and bonding environment of water dissolved in common solvents using near infrared absorptivity,” J. Res. Natl. Inst. Stand. 104(2), 173–183 (1999).
[CrossRef]

Dickinson, M. R.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2-microm fiber laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 25(5), 407–413 (1999).
[CrossRef] [PubMed]

Dussardier, B.

Estrada-Baltazar, A.

A. Estrada-Baltazar, A. De Leon-Rodriguez, K. R. Hall, M. Ramos-Estrada, and G. A. Iglesias-Silva, “Experimental densities and excess volumes for binary mixtures containing propionic acid, acetone, and water from 283.15 K to 323.15 K at atmospheric pressure,” J. Chem. Eng. Data 48(6), 1425–1431 (2003).
[CrossRef]

Faucher, D.

Feng, S. C.

Feng, T.

Feng, Y.

G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17(9), 1818–1820 (2005).
[CrossRef]

G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “784-nm amplified spontaneous emission from Tm3+-doped fluoride glass fiber pumped by an 1120-nm fiber laser,” Opt. Lett. 30(3), 269–271 (2005).
[CrossRef] [PubMed]

Fried, N. M.

N. J. Scott, C. M. Cilip, and N. M. Fried, “Thulium fiber laser ablation of urinary stones through small-core optical fibers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 435–440 (2009).
[CrossRef]

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
[CrossRef] [PubMed]

N. M. Fried, “Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 mu m,” Lasers Surg. Med. 37(1), 53–58 (2005).
[CrossRef] [PubMed]

Frison, B.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49(1), 60–62 (2013).
[CrossRef]

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, S. Thomas, P. Long, and M. Saad, “Dual-wavelength lasing around 800 nm in a Tm:ZBLAN fibre laser,” in IEEE Photonics Conference, (2012), pp. 668–669.
[CrossRef]

Gao, Y. Z.

Geiser, P.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[CrossRef]

Gingras, D.

Graeber, D.

K. R. Murphy, C. A. Stedmon, D. Graeber, and R. Bro, “Fluorescence spectroscopy and multi-way techniques. PARAFAC,” Anal. Methods 5(23), 6557–6566 (2013).
[CrossRef]

Gu, X.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49(1), 60–62 (2013).
[CrossRef]

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, S. Thomas, P. Long, and M. Saad, “Dual-wavelength lasing around 800 nm in a Tm:ZBLAN fibre laser,” in IEEE Photonics Conference, (2012), pp. 668–669.
[CrossRef]

Gulsoy, M.

M. Güney, B. Tunc, and M. Gulsoy, “Incisional effects of 1940 nm thulium fiber laser on oral soft tissues,” Proc. SPIE 8584, 848408 (2013).

B. Tunc and M. Gulsoy, “Tm:fiber laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: ex vivo dosimetry for ovine brain,” Lasers Surg. Med. 45(1), 48–56 (2013).
[CrossRef] [PubMed]

Güney, M.

M. Güney, B. Tunc, and M. Gulsoy, “Incisional effects of 1940 nm thulium fiber laser on oral soft tissues,” Proc. SPIE 8584, 848408 (2013).

Hall, K. R.

A. Estrada-Baltazar, A. De Leon-Rodriguez, K. R. Hall, M. Ramos-Estrada, and G. A. Iglesias-Silva, “Experimental densities and excess volumes for binary mixtures containing propionic acid, acetone, and water from 283.15 K to 323.15 K at atmospheric pressure,” J. Chem. Eng. Data 48(6), 1425–1431 (2003).
[CrossRef]

Hawranek, J. P.

B. Czarnik-Matusewicz, S. Pilorz, and J. P. Hawranek, “Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy,” Anal. Chim. Acta 544(1–2), 15–25 (2005).
[CrossRef]

Huang, S.

G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “784-nm amplified spontaneous emission from Tm3+-doped fluoride glass fiber pumped by an 1120-nm fiber laser,” Opt. Lett. 30(3), 269–271 (2005).
[CrossRef] [PubMed]

G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17(9), 1818–1820 (2005).
[CrossRef]

Hvidt, A.

L. Bøje and A. Hvidt, “Densities of aqueous mixtures of non-electrolytes,” J. Chem. Thermodyn. 3(5), 663–673 (1971).
[CrossRef]

Iglesias-Silva, G. A.

A. Estrada-Baltazar, A. De Leon-Rodriguez, K. R. Hall, M. Ramos-Estrada, and G. A. Iglesias-Silva, “Experimental densities and excess volumes for binary mixtures containing propionic acid, acetone, and water from 283.15 K to 323.15 K at atmospheric pressure,” J. Chem. Eng. Data 48(6), 1425–1431 (2003).
[CrossRef]

Ishida, K.

K. Noda, M. Ohashi, and K. Ishida, “Viscosities and densities at 298.15 K for mixtures of methanol, acetone, and water,” J. Chem. Eng. Data 27(3), 326–328 (1982).
[CrossRef]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photon. 6(7), 423–431 (2012).
[CrossRef]

M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2-microm fiber laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 25(5), 407–413 (1999).
[CrossRef] [PubMed]

Jia, C.

K. Ramaswamy, C. Jia, M. Dastmalchi, L. R. Chen, and M. Saad, “Dual-band 810/1480 nm Tm3+:ZBLAN fiber laser,” in IEEE Photonics Conference (2013), pp. 273–274.

Kasik, I.

Khorsandi, A.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[CrossRef]

Kiers, H. A. L.

R. Bro and H. A. L. Kiers, “A new efficient method for determining the number of components in PARAFAC models,” J. Chemometr. 17(5), 274–286 (2003).
[CrossRef]

King, T. A.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2-microm fiber laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 25(5), 407–413 (1999).
[CrossRef] [PubMed]

Koga, Y.

Y. Koga, F. Sebe, T. Minami, K. Otake, K. Saitow, and K. Nishikawa, “Spectrum of excess partial molar absorptivity. I. Near infrared spectroscopic study of aqueous acetonitrile and acetone,” J. Phys. Chem. B 113(35), 11928–11935 (2009).
[CrossRef] [PubMed]

Lan, Z. D.

Li, Q.

Liu, S.

Long, P.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, S. Thomas, P. Long, and M. Saad, “Dual-wavelength lasing around 800 nm in a Tm:ZBLAN fibre laser,” in IEEE Photonics Conference, (2012), pp. 668–669.
[CrossRef]

Loock, H. P.

H. P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Act., Biol. Chem. 173, 157–163 (2012).

Lou, C. Y.

Max, J. J.

J. J. Max and C. Chapados, “Infrared spectroscopy of acetone-water liquid mixtures. II. Molecular model,” J. Chem. Phys. 120(14), 6625–6641 (2004).
[CrossRef] [PubMed]

J. J. Max and C. Chapados, “Infrared spectroscopy of acetone-water liquid mixtures. I. Factor analysis,” J. Chem. Phys. 119(11), 5632–5643 (2003).
[CrossRef]

Minami, T.

Y. Koga, F. Sebe, T. Minami, K. Otake, K. Saitow, and K. Nishikawa, “Spectrum of excess partial molar absorptivity. I. Near infrared spectroscopic study of aqueous acetonitrile and acetone,” J. Phys. Chem. B 113(35), 11928–11935 (2009).
[CrossRef] [PubMed]

Murphy, K. R.

K. R. Murphy, C. A. Stedmon, D. Graeber, and R. Bro, “Fluorescence spectroscopy and multi-way techniques. PARAFAC,” Anal. Methods 5(23), 6557–6566 (2013).
[CrossRef]

Murray, K. E.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
[CrossRef] [PubMed]

Nishikawa, K.

Y. Koga, F. Sebe, T. Minami, K. Otake, K. Saitow, and K. Nishikawa, “Spectrum of excess partial molar absorptivity. I. Near infrared spectroscopic study of aqueous acetonitrile and acetone,” J. Phys. Chem. B 113(35), 11928–11935 (2009).
[CrossRef] [PubMed]

Noda, K.

K. Noda, M. Ohashi, and K. Ishida, “Viscosities and densities at 298.15 K for mixtures of methanol, acetone, and water,” J. Chem. Eng. Data 27(3), 326–328 (1982).
[CrossRef]

Ohashi, M.

K. Noda, M. Ohashi, and K. Ishida, “Viscosities and densities at 298.15 K for mixtures of methanol, acetone, and water,” J. Chem. Eng. Data 27(3), 326–328 (1982).
[CrossRef]

Otake, K.

Y. Koga, F. Sebe, T. Minami, K. Otake, K. Saitow, and K. Nishikawa, “Spectrum of excess partial molar absorptivity. I. Near infrared spectroscopic study of aqueous acetonitrile and acetone,” J. Phys. Chem. B 113(35), 11928–11935 (2009).
[CrossRef] [PubMed]

Pan, S. L.

Peng, W. J.

Peterka, P.

Pierce, M. C.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2-microm fiber laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 25(5), 407–413 (1999).
[CrossRef] [PubMed]

Pilorz, S.

B. Czarnik-Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vib. Spectrosc. 40(2), 235–245 (2006).
[CrossRef]

B. Czarnik-Matusewicz, S. Pilorz, and J. P. Hawranek, “Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy,” Anal. Chim. Acta 544(1–2), 15–25 (2005).
[CrossRef]

Qin, G.

G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “784-nm amplified spontaneous emission from Tm3+-doped fluoride glass fiber pumped by an 1120-nm fiber laser,” Opt. Lett. 30(3), 269–271 (2005).
[CrossRef] [PubMed]

G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17(9), 1818–1820 (2005).
[CrossRef]

Ramaswamy, K.

K. Ramaswamy, C. Jia, M. Dastmalchi, L. R. Chen, and M. Saad, “Dual-band 810/1480 nm Tm3+:ZBLAN fiber laser,” in IEEE Photonics Conference (2013), pp. 273–274.

Ramos-Estrada, M.

A. Estrada-Baltazar, A. De Leon-Rodriguez, K. R. Hall, M. Ramos-Estrada, and G. A. Iglesias-Silva, “Experimental densities and excess volumes for binary mixtures containing propionic acid, acetone, and water from 283.15 K to 323.15 K at atmospheric pressure,” J. Chem. Eng. Data 48(6), 1425–1431 (2003).
[CrossRef]

Saad, M.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49(1), 60–62 (2013).
[CrossRef]

K. Ramaswamy, C. Jia, M. Dastmalchi, L. R. Chen, and M. Saad, “Dual-band 810/1480 nm Tm3+:ZBLAN fiber laser,” in IEEE Photonics Conference (2013), pp. 273–274.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, S. Thomas, P. Long, and M. Saad, “Dual-wavelength lasing around 800 nm in a Tm:ZBLAN fibre laser,” in IEEE Photonics Conference, (2012), pp. 668–669.
[CrossRef]

Saitow, K.

Y. Koga, F. Sebe, T. Minami, K. Otake, K. Saitow, and K. Nishikawa, “Spectrum of excess partial molar absorptivity. I. Near infrared spectroscopic study of aqueous acetonitrile and acetone,” J. Phys. Chem. B 113(35), 11928–11935 (2009).
[CrossRef] [PubMed]

Saraji, M.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[CrossRef]

Sarmani, A. R.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49(1), 60–62 (2013).
[CrossRef]

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, S. Thomas, P. Long, and M. Saad, “Dual-wavelength lasing around 800 nm in a Tm:ZBLAN fibre laser,” in IEEE Photonics Conference, (2012), pp. 668–669.
[CrossRef]

Schade, W.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[CrossRef]

Scott, N. J.

N. J. Scott, C. M. Cilip, and N. M. Fried, “Thulium fiber laser ablation of urinary stones through small-core optical fibers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 435–440 (2009).
[CrossRef]

Sebe, F.

Y. Koga, F. Sebe, T. Minami, K. Otake, K. Saitow, and K. Nishikawa, “Spectrum of excess partial molar absorptivity. I. Near infrared spectroscopic study of aqueous acetonitrile and acetone,” J. Phys. Chem. B 113(35), 11928–11935 (2009).
[CrossRef] [PubMed]

Shirakawa, A.

G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “784-nm amplified spontaneous emission from Tm3+-doped fluoride glass fiber pumped by an 1120-nm fiber laser,” Opt. Lett. 30(3), 269–271 (2005).
[CrossRef] [PubMed]

G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17(9), 1818–1820 (2005).
[CrossRef]

Stedmon, C. A.

K. R. Murphy, C. A. Stedmon, D. Graeber, and R. Bro, “Fluorescence spectroscopy and multi-way techniques. PARAFAC,” Anal. Methods 5(23), 6557–6566 (2013).
[CrossRef]

Tan, S. Y.

Thomas, S.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, S. Thomas, P. Long, and M. Saad, “Dual-wavelength lasing around 800 nm in a Tm:ZBLAN fibre laser,” in IEEE Photonics Conference, (2012), pp. 668–669.
[CrossRef]

Tunc, B.

M. Güney, B. Tunc, and M. Gulsoy, “Incisional effects of 1940 nm thulium fiber laser on oral soft tissues,” Proc. SPIE 8584, 848408 (2013).

B. Tunc and M. Gulsoy, “Tm:fiber laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: ex vivo dosimetry for ovine brain,” Lasers Surg. Med. 45(1), 48–56 (2013).
[CrossRef] [PubMed]

Ueda, K.-I.

G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17(9), 1818–1820 (2005).
[CrossRef]

G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “784-nm amplified spontaneous emission from Tm3+-doped fluoride glass fiber pumped by an 1120-nm fiber laser,” Opt. Lett. 30(3), 269–271 (2005).
[CrossRef] [PubMed]

Vallée, R.

Wentzell, P. D.

H. P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Act., Biol. Chem. 173, 157–163 (2012).

Willer, U.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[CrossRef]

Yan, F. P.

Anal. Chim. Acta

B. Czarnik-Matusewicz, S. Pilorz, and J. P. Hawranek, “Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy,” Anal. Chim. Acta 544(1–2), 15–25 (2005).
[CrossRef]

Anal. Methods

K. R. Murphy, C. A. Stedmon, D. Graeber, and R. Bro, “Fluorescence spectroscopy and multi-way techniques. PARAFAC,” Anal. Methods 5(23), 6557–6566 (2013).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Electron. Lett.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49(1), 60–62 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

N. J. Scott, C. M. Cilip, and N. M. Fried, “Thulium fiber laser ablation of urinary stones through small-core optical fibers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 435–440 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17(9), 1818–1820 (2005).
[CrossRef]

J. Chem. Eng. Data

A. Estrada-Baltazar, A. De Leon-Rodriguez, K. R. Hall, M. Ramos-Estrada, and G. A. Iglesias-Silva, “Experimental densities and excess volumes for binary mixtures containing propionic acid, acetone, and water from 283.15 K to 323.15 K at atmospheric pressure,” J. Chem. Eng. Data 48(6), 1425–1431 (2003).
[CrossRef]

K. Noda, M. Ohashi, and K. Ishida, “Viscosities and densities at 298.15 K for mixtures of methanol, acetone, and water,” J. Chem. Eng. Data 27(3), 326–328 (1982).
[CrossRef]

J. Chem. Phys.

J. J. Max and C. Chapados, “Infrared spectroscopy of acetone-water liquid mixtures. II. Molecular model,” J. Chem. Phys. 120(14), 6625–6641 (2004).
[CrossRef] [PubMed]

J. J. Max and C. Chapados, “Infrared spectroscopy of acetone-water liquid mixtures. I. Factor analysis,” J. Chem. Phys. 119(11), 5632–5643 (2003).
[CrossRef]

J. Chem. Thermodyn.

L. Bøje and A. Hvidt, “Densities of aqueous mixtures of non-electrolytes,” J. Chem. Thermodyn. 3(5), 663–673 (1971).
[CrossRef]

J. Chemometr.

R. Bro and H. A. L. Kiers, “A new efficient method for determining the number of components in PARAFAC models,” J. Chemometr. 17(5), 274–286 (2003).
[CrossRef]

J. Endourol.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Chem. B

Y. Koga, F. Sebe, T. Minami, K. Otake, K. Saitow, and K. Nishikawa, “Spectrum of excess partial molar absorptivity. I. Near infrared spectroscopic study of aqueous acetonitrile and acetone,” J. Phys. Chem. B 113(35), 11928–11935 (2009).
[CrossRef] [PubMed]

J. Res. Natl. Inst. Stand.

B. Dickens and S. H. Dickens, “Estimation of concentration and bonding environment of water dissolved in common solvents using near infrared absorptivity,” J. Res. Natl. Inst. Stand. 104(2), 173–183 (1999).
[CrossRef]

Lasers Surg. Med.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2-microm fiber laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 25(5), 407–413 (1999).
[CrossRef] [PubMed]

B. Tunc and M. Gulsoy, “Tm:fiber laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: ex vivo dosimetry for ovine brain,” Lasers Surg. Med. 45(1), 48–56 (2013).
[CrossRef] [PubMed]

N. M. Fried, “Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 mu m,” Lasers Surg. Med. 37(1), 53–58 (2005).
[CrossRef] [PubMed]

Nat. Photon.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photon. 6(7), 423–431 (2012).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[CrossRef]

Opt. Lett.

Proc. SPIE

M. Güney, B. Tunc, and M. Gulsoy, “Incisional effects of 1940 nm thulium fiber laser on oral soft tissues,” Proc. SPIE 8584, 848408 (2013).

Sens. Act., Biol. Chem.

H. P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Act., Biol. Chem. 173, 157–163 (2012).

Vib. Spectrosc.

B. Czarnik-Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vib. Spectrosc. 40(2), 235–245 (2006).
[CrossRef]

Other

C. Xia, “Mid-infrared supercontinuum laser system and its biomedical applications,” Ph.D. Dissertation (University of Michigan, Ann Arbor, 2009).

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, S. Thomas, P. Long, and M. Saad, “Dual-wavelength lasing around 800 nm in a Tm:ZBLAN fibre laser,” in IEEE Photonics Conference, (2012), pp. 668–669.
[CrossRef]

K. Ramaswamy, C. Jia, M. Dastmalchi, L. R. Chen, and M. Saad, “Dual-band 810/1480 nm Tm3+:ZBLAN fiber laser,” in IEEE Photonics Conference (2013), pp. 273–274.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the tri-wavelength fiber laser. Two Tm3+:ZBLAN fibers are incorporated into fiber cavities that are defined by 3 different FBGs and a shared gold mirror.

Fig. 2
Fig. 2

(a) Measured output power at λ1 (red circles) and λ2 (black squares) as a function of P1064 when P1560 is on (solid symbols) and off (open symbols). (b) Measured output power at λ3 as a function of P1560 when P1064 is on (solid) and off (open symbols).

Fig. 3
Fig. 3

(a) Laser emission spectrum for triple–wavelength operation when P1064 = 1520 mW and P1560 = 480 mW. (b) Peak power fluctuations of three lasing lines when P1064 = 1650 mW and P1560 = 480 mW. Wavelengths λ1, λ2, and λ3 are shown as red circles, black squares and blue triangles, respectively.

Fig. 4
Fig. 4

Laser emission spectra showing switchable operation at (a) 1461 nm; (b) 1505 nm; (c) both 1461 and 1505 nm.

Fig. 5
Fig. 5

NIR spectra of water in acetone with 21 different concentrations. The dashed line shows the spectrum of neat water from reference [25], whereas the solid lines show water acetone solutions with mole fractions between 1.0 and 0.0 in intervals of 0.05.

Fig. 6
Fig. 6

(a) Near-infrared spectra of water in acetone with 20 different concentrations as in Fig. 5 after a weighted contribution of the acetone absorption spectrum had been subtracted from all spectra in Fig. 5. (b) The spectra of the three PARAFAC components obtained by decomposition of (a) show an isosbestic point near 1440 nm. The 1461 and 1505 nm laser wavelengths are included as lines.

Fig. 7
Fig. 7

The symbols show the fraction that each of the three PARFAC components contributes to the absorption spectrum. The contribution of component 1 (black triangles) is compared to the sum of water species W1 + W2 as calculated from MC (solid black line), whereas component 2 (red circles) qualitatively agrees with the sum of species W3 + W4 (solid red line) and component 3 (blue squares) rises akin to W5 (blue line). The contributions of each of the five water species according to MC is given with dashed lines.

Fig. 8
Fig. 8

Absorption of solutions of water in acetone measured using the fiber laser at (a) 1461 nm, (b) 1505 nm and (c) 1874 nm. The 99% confidence intervals are shown as two blue lines and used to calculate the limit of detection (dashed line). The molar absorptivity at each wavelength was calculated from the slope of the linear fit (red line). The data were analyzed as in reference 20. The solid green symbols are absorbance values extracted from Fig. 5 and are connected to guide the eye.

Fig. 9
Fig. 9

Fractional absorption of solutions of water in acetone calculated from Eq. (1). The absorption fractions at 1461 nm (squares), 1505 nm (circles) and 1874 nm (triangles) are shown for both the fiber laser (solid symbols) and a commercial NIR spectrometer (open symbols). The lines are results of a polynomial fit meant to guide the eye.

Tables (1)

Tables Icon

Table 1 Absorption Coefficients, ƐH2O(λ), in [L mol−1 m−1] Calculated Using the Laser Absorption at Low Concentrations in Acetone Compared to the Literature Values for Bulk Water

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F λ (c)= A λ (c) λ=1 3 A λ (c)

Metrics