Abstract

The slope of the inverse square of the contrast values versus camera exposure time at multi-exposure speckle imaging (MESI) can be a new indicator of flow velocity. The slope is linear as the diffuse coefficient in Brownian motion diffusion model and the mean velocity in ballistic motion model. Combining diffuse speckle contrast analysis (DSCA) and MESI, we demonstrate theoretically and experimentally that the flow velocity can be obtained from this slope. The calculation results processes of the slop don’t need tedious Newtonian iterative method and are computationally inexpensive. The new indicator can play an important role in quantitatively assessing tissue blood flow velocity.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fercher and J. Briers, “Flow visualizaiton by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
    [Crossref]
  2. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
    [Crossref] [PubMed]
  3. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
    [Crossref] [PubMed]
  4. K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. Thakor, “Contrast-enhanced imaging of cerebral vasculature with laser speckle,” Appl. Opt. 46(22), 5340–5346 (2007).
    [Crossref] [PubMed]
  5. Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007).
    [Crossref] [PubMed]
  6. R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
    [Crossref]
  7. H. Cheng, Y. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express 16(14), 10214–10219 (2008).
    [Crossref] [PubMed]
  8. R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett. 38(9), 1401–1403 (2013).
    [Crossref] [PubMed]
  9. R. Bi, J. Dong, and K. Lee, “Multi-channel deep tissue flowmetry based on temporal diffuse speckle contrast analysis,” Opt. Express 21(19), 22854–22861 (2013).
    [Crossref] [PubMed]
  10. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
    [Crossref] [PubMed]
  11. H. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32(15), 2188–2190 (2007).
    [Crossref] [PubMed]
  12. S. E. Skipetrov, J. Peuser, R. Cerbino, P. Zakharov, B. Weber, and F. Scheffold, “Noise in laser speckle correlation and imaging techniques,” Opt. Express 18(14), 14519–14534 (2010).
    [Crossref] [PubMed]
  13. P.-A. Lemieus and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16(7), 1651–1664 (1999).
    [Crossref]
  14. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
    [Crossref] [PubMed]
  15. X. L. Wu, D. J. Pine, P. M. Chaikin, J. S. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7(1), 15–20 (1990).
    [Crossref]
  16. D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192–215 (1997).
    [Crossref]
  17. Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media: The ballistic to diffusive transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(4), 4843–4850 (1999).
    [Crossref] [PubMed]
  18. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
    [Crossref]
  19. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  20. L. Wang and S. L. Jacques, http://omlc.ogi.edu/software/mc/ .

2013 (2)

2010 (2)

S. E. Skipetrov, J. Peuser, R. Cerbino, P. Zakharov, B. Weber, and F. Scheffold, “Noise in laser speckle correlation and imaging techniques,” Opt. Express 18(14), 14519–14534 (2010).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

2008 (2)

2007 (3)

2006 (1)

2005 (1)

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

1999 (2)

P.-A. Lemieus and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16(7), 1651–1664 (1999).
[Crossref]

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media: The ballistic to diffusive transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(4), 4843–4850 (1999).
[Crossref] [PubMed]

1997 (1)

1996 (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1990 (1)

1988 (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

1981 (1)

A. Fercher and J. Briers, “Flow visualizaiton by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

All, A.

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

Bandyopadhyay, R.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Bi, R.

Boas, D.

Briers, J.

A. Fercher and J. Briers, “Flow visualizaiton by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

Cerbino, R.

Chaikin, P. M.

X. L. Wu, D. J. Pine, P. M. Chaikin, J. S. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7(1), 15–20 (1990).
[Crossref]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Cheng, H.

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

Dayasundara, S.

Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007).
[Crossref] [PubMed]

Dixon, P.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Dong, J.

Dunn, A. K.

Duong, T. Q.

Durduran, T.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

Durian, D.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Durian, D. J.

Fercher, A.

A. Fercher and J. Briers, “Flow visualizaiton by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Gittings, A.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Gopal, A.

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Huang, J. S.

Hughes, S.

Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007).
[Crossref] [PubMed]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Jia, X.

Jones, I. P.

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media: The ballistic to diffusive transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(4), 4843–4850 (1999).
[Crossref] [PubMed]

Lee, K.

Lemieus, P.-A.

Li, N.

Li, P.

Luo, Q.

Menon, R. S.

Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007).
[Crossref] [PubMed]

Murari, K.

Ni, S.

Page, J. H.

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media: The ballistic to diffusive transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(4), 4843–4850 (1999).
[Crossref] [PubMed]

Parthasarathy, A. B.

Peuser, J.

Pine, D. J.

X. L. Wu, D. J. Pine, P. M. Chaikin, J. S. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7(1), 15–20 (1990).
[Crossref]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Rege, A.

Scheffold, F.

Schriemer, H. P.

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media: The ballistic to diffusive transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(4), 4843–4850 (1999).
[Crossref] [PubMed]

Sheng, P.

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media: The ballistic to diffusive transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(4), 4843–4850 (1999).
[Crossref] [PubMed]

Skipetrov, S. E.

Suh, S.

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Thakor, N.

Tom, W. J.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007).
[Crossref] [PubMed]

Weber, B.

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

Weitz, D. A.

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media: The ballistic to diffusive transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(4), 4843–4850 (1999).
[Crossref] [PubMed]

X. L. Wu, D. J. Pine, P. M. Chaikin, J. S. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7(1), 15–20 (1990).
[Crossref]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Wu, X. L.

Yan, Y.

Yodh, A.

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

Zakharov, P.

Zeng, S.

Zhang, L.

Zhang, X.

Zhang, Z. Q.

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media: The ballistic to diffusive transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(4), 4843–4850 (1999).
[Crossref] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Appl. Opt. (1)

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

A. Fercher and J. Briers, “Flow visualizaiton by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media: The ballistic to diffusive transition,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(4), 4843–4850 (1999).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

Rev. Sci. Instrum. (1)

R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Other (1)

L. Wang and S. L. Jacques, http://omlc.ogi.edu/software/mc/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Slab geometry and some notations.

Fig. 2
Fig. 2

(a) Comparison between Monte Carlo simulation and standard diffusion approximation results Eq. (26) for the inverse square of the contrast values at different exposure times. The black spot-line corresponds to the MC simulation results and other spot-lines correspond to Eq. (26) results; (b) Normalized probability density function of total dimensionless momentum transfer at the position r = 0.2 cm and z = 2.0 cm. The mean velocity is 0.80 mm/s. μs = 2cm−1, μa = 0.01cm−1, λ = 632.8nm and d = 2cm.

Fig. 3
Fig. 3

Schematic of the experimental setup using flow phantom.

Fig. 4
Fig. 4

Spatial contrast of different mean velocities at different exposure times.

Fig. 5
Fig. 5

Inverse square of the contrast values of different mean velocities at different exposure times. The solid line corresponds to the analytical results Eq. (26) and the spot corresponds to the experiment results. The mean velocities are respectively 0.8 mm/s, 1.20 mm/s and 1.60 mm/s. The deviation error bars are shown for the data.

Fig. 6
Fig. 6

(a) Experiment results kslope versus mean flow velocity and (b) normalized values of experiment results and the analytical results Eq. (26) kslope versus normalized mean flow velocity. The velocity 1.60 mm/s is baseline speed. The slope of baseline speed is baseline measure value. The deviation error bars are shown for the data.

Tables (1)

Tables Icon

Table 1 Normalized values of experiment results and analytical results kslope at different mean velocities

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

[ - 1 3 μ s ' 2 + μ a + 1 3 μ s ' k 0 2 Δ r 2 ( τ ) ] G 1 ( r , τ ) = S ( r )
G 1 ( r , z , τ ) = 3 μ s ' 4 π m = ( exp ( k ( τ ) r + , m ) r + , m exp ( k ( τ ) r , m ) r , m )
r ± , m = r 2 + ( z z ± , m ) 2
z + , m = 2 m ( d + 2 z b ) + l t r
z , m = 2 m ( d + 2 z b ) 2 z b l t r
z b = 2 ( 1 R e f f ) / 3 μ s ' ( 1 + R e f f )
R e f f 1.44 n 2 + 0.71 n 1 + 0.668 + 0.00636 n
l t r = 1 μ s '
k ( τ ) = 3 μ s ' μ a + α μ s ' 2 k 0 2 Δ r 2 ( τ )
g 1 ( r , z , τ ) = G 1 ( r , z , τ ) / G 1 ( r , z , 0 )
K 2 ( T ) = 2 β T 0 T ( 1 τ / T ) [ g 1 ( r , z , τ ) ] 2 d τ
K 2 ( T ) = 2 β T 0 T ( 1 τ / T ) m = x = ξ ± m , ± x [ exp ( 1 2 ( r ± , m + r ± , x ) μ s ' k 0 Δ r 2 ( τ ) ) ] 2 d τ
V B ( T ) = β [ ( 3 + 6 Γ B T + 4 Γ B T ) e 2 Γ B T 3 + 2 Γ B T ] / ( 2 Γ B 2 T 2 )
Γ B = 3 2 ( r ± , m + r ± , x ) 2 μ s ' 2 k 0 2 D B
V b ( T ) = β [ e 2 Γ b T 1 + 2 Γ b T ] / ( 2 Γ b 2 T 2 )
Γ b = 1 2 ( r ± , m + r ± , x ) μ s ' k 0 v
V B ( T ) = β ( 2 Γ B T 3 ) / ( 2 Γ B 2 T 2 )
V b ( T ) = β ( 2 Γ b T 1 ) / ( 2 Γ b 2 T 2 )
β K B 2 ( T ) = T 2 Γ 1 T 3 2 Γ 2 = 1 Γ 1 T + 1 2 Γ 1 2 3 Γ 2 Γ 1 T
Γ 1 = m = x = ξ ± m , ± x 1 Γ B = 2 3 D B μ s ' 2 k 0 2 m = x = ξ ± m , ± x 1 ( r ± , m + r ± , x ) 2
Γ 2 = m = x = ξ ± m , ± x 1 Γ B 2 = 4 9 D B 2 μ s ' 4 k 0 4 m = x = ξ ± m , ± x 1 ( r ± , m + r ± , x ) 4
β K b 2 ( T ) = T 2 Γ 3 T 1 2 Γ 4 = 1 Γ 3 T + 1 2 Γ 3 2 Γ 4 Γ 3 T
Γ 3 = m = x = ξ ± m , ± x 1 Γ b = 2 μ s ' k 0 v m = x = ξ ± m , ± x 1 ( r ± , m + r ± , x )
Γ 4 = m = x = ξ ± m , ± x 1 Γ b 2 = 4 μ s ' 2 k 0 2 v 2 m = x = ξ ± m , ± x 1 ( r ± , m + r ± , x ) 2
1 K B 2 ( T ) = 1 β ( 1 Γ 1 T + 3 Γ 2 2 Γ 1 2 ) = 1 β ( D B 3 μ s ' 2 k 0 2 2 m = x = ξ ± m , ± x 1 ( r ± , m + r ± , x ) 2 T + m = x = ξ ± m , ± x 1 ( r ± , m + r ± , x ) 4 ( m = x = ξ ± m , ± x 1 ( r ± , m + r ± , x ) 2 ) 2 )
1 K b 2 ( T ) = 1 β ( 1 Γ 3 T + Γ 4 2 Γ 3 2 ) = 1 β ( v μ s ' k 0 2 m = x = ξ ± m , ± x 1 ( r ± , m + r ± , x ) T + m = x = ξ ± m , ± x 1 ( r ± , m + r ± , x ) 2 ( m = x = ξ ± m , ± x 1 ( r ± , m + r ± , x ) ) 2 )
g 1 ( τ , z , r ) = 0 P ( Y , r , z ) exp [ 1 3 k 0 2 Δ r 2 ( τ ) Y ] d Y

Metrics