Abstract

Low-voltage swing (≤1.0 V) high-contrast ratio (6 dB) electro-absorption modulation covering 1460 to 1560 nm wavelength has been demonstrated using Ge/SiGe quantum confined Stark effect (QCSE) diodes grown on a silicon substrate. The heterolayers for the devices were designed using an 8-band k.p Poisson-Schrödinger solver which demonstrated excellent agreement with the experimental results. Modelling and experimental results demonstrate that by changing the quantum well width of the device, low power Ge/SiGe QCSE modulators can be designed to cover the S- and C-telecommunications bands.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Paul, “Silicon photonics: a bright future?” Elec. Lett. 45, 582–584 (2009).
    [CrossRef]
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [CrossRef]
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon. 4, 518–526 (2010).
    [CrossRef]
  4. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nature Comm. 2, 296 (2011).
    [CrossRef]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [CrossRef] [PubMed]
  6. D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
    [CrossRef]
  7. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photon. 2, 433–437 (2008).
    [CrossRef]
  8. D. Feng, S. Liao, H. Liang, J. Fong, B. Bijlani, R. Shafiiha, B. J. Luff, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide,” Opt. Express 20, 22224–22232 (2012).
    [CrossRef] [PubMed]
  9. Y. H. Kuo, Y. K. Lee, Y. S. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
    [CrossRef] [PubMed]
  10. E. H. Edwards, L. Lever, E. T. Fei, T. I. Kamins, Z. Ikonic, J. S. Harris, R. W. Kelsall, and D. A. B. Miller, “Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon,” Opt. Express 21, 867–876 (2013).
    [CrossRef] [PubMed]
  11. P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photon. 8, 482–488 (2014).
    [CrossRef]
  12. P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, G. Isella, D. Chrastina, J.-R. Coudevylle, X. L. Roux, S. Edmond, D. Bouville, and L. Vivien, “Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells,” Appl. Phys. Letts. 102, 191107 (2013).
    [CrossRef]
  13. ( http://www.nextnano.de/nextnano3/ ).
  14. D. J. Paul, “The progress towards terahertz quantum cascade lasers on silicon substrates,” Laser & Photon. Rev. 4, 610–632 (2010).
    [CrossRef]
  15. D. J. Paul, “8-band k.p modeling of the quantum confined Stark effect in Ge quantum wells on Si substrates,” Phys. Rev. B 77, 155323 (2008).
    [CrossRef]
  16. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
    [CrossRef]
  17. S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Letts. 24, 461–463 (2012).
    [CrossRef]
  18. M. S. Rouifed, P. Chaisakul, D. Marris-Morini, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Quantum-confined Stark effect at 1.3μm in Ge/Si0.35Ge0.65 quantum-well structure,” Opt. Lett. 37, 3960–3962 (2012).
    [CrossRef] [PubMed]
  19. E. H. Edwards, R. M. Audet, E. T. Fei, S. A. Claussen, R. K. Schaevitz, E. Tasyurek, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe asymmetric Fabry-Perot quantum well electroabsorption modulators,” Opt. Express 20, 29164–29173 (2012).
    [CrossRef]
  20. V. Shah, A. Dobbie, M. Myronov, and D. Leadley, “High quality relaxed Ge layers grown directly on a Si (001) substrate,” Solid-State Electron. 62, 189–194 (2011).
    [CrossRef]
  21. M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
    [CrossRef]
  22. K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, and D. R. Leadley, “Ohmic contacts to n-type germanium with low specific contact resistivity,” Appl. Phys. Letts. 100, 022113 (2012).
    [CrossRef]
  23. M. Vanecek and A. Poruba, “Fourier-transform photocurrent spectroscopy of microcrystalline silicon for solar cells,” Appl. Phys. Letts. 80, 719–721 (2002).
    [CrossRef]
  24. R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Select. Topics Quantum Elec. 14, 1082–1089 (2008).
    [CrossRef]
  25. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. L. Roux, E. Gatti, S. Edmond, J. Osmond, E. Cassan, and L. Vivien, “Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures,” Opt. Lett. 35, 2913–2915 (2010).
    [CrossRef] [PubMed]
  26. Semiconductor Industry Association, “International technology roadmap for semiconductors,” Tech. rep., Semiconductor Industry Association (2013).

2014

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photon. 8, 482–488 (2014).
[CrossRef]

2013

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, G. Isella, D. Chrastina, J.-R. Coudevylle, X. L. Roux, S. Edmond, D. Bouville, and L. Vivien, “Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells,” Appl. Phys. Letts. 102, 191107 (2013).
[CrossRef]

E. H. Edwards, L. Lever, E. T. Fei, T. I. Kamins, Z. Ikonic, J. S. Harris, R. W. Kelsall, and D. A. B. Miller, “Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon,” Opt. Express 21, 867–876 (2013).
[CrossRef] [PubMed]

2012

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[CrossRef]

K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, and D. R. Leadley, “Ohmic contacts to n-type germanium with low specific contact resistivity,” Appl. Phys. Letts. 100, 022113 (2012).
[CrossRef]

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Letts. 24, 461–463 (2012).
[CrossRef]

M. S. Rouifed, P. Chaisakul, D. Marris-Morini, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Quantum-confined Stark effect at 1.3μm in Ge/Si0.35Ge0.65 quantum-well structure,” Opt. Lett. 37, 3960–3962 (2012).
[CrossRef] [PubMed]

E. H. Edwards, R. M. Audet, E. T. Fei, S. A. Claussen, R. K. Schaevitz, E. Tasyurek, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe asymmetric Fabry-Perot quantum well electroabsorption modulators,” Opt. Express 20, 29164–29173 (2012).
[CrossRef]

D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

D. Feng, S. Liao, H. Liang, J. Fong, B. Bijlani, R. Shafiiha, B. J. Luff, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide,” Opt. Express 20, 22224–22232 (2012).
[CrossRef] [PubMed]

2011

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nature Comm. 2, 296 (2011).
[CrossRef]

V. Shah, A. Dobbie, M. Myronov, and D. Leadley, “High quality relaxed Ge layers grown directly on a Si (001) substrate,” Solid-State Electron. 62, 189–194 (2011).
[CrossRef]

2010

D. J. Paul, “The progress towards terahertz quantum cascade lasers on silicon substrates,” Laser & Photon. Rev. 4, 610–632 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon. 4, 518–526 (2010).
[CrossRef]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. L. Roux, E. Gatti, S. Edmond, J. Osmond, E. Cassan, and L. Vivien, “Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures,” Opt. Lett. 35, 2913–2915 (2010).
[CrossRef] [PubMed]

2009

D. J. Paul, “Silicon photonics: a bright future?” Elec. Lett. 45, 582–584 (2009).
[CrossRef]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

2008

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photon. 2, 433–437 (2008).
[CrossRef]

D. J. Paul, “8-band k.p modeling of the quantum confined Stark effect in Ge quantum wells on Si substrates,” Phys. Rev. B 77, 155323 (2008).
[CrossRef]

R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Select. Topics Quantum Elec. 14, 1082–1089 (2008).
[CrossRef]

2005

Y. H. Kuo, Y. K. Lee, Y. S. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

2002

M. Vanecek and A. Poruba, “Fourier-transform photocurrent spectroscopy of microcrystalline silicon for solar cells,” Appl. Phys. Letts. 80, 719–721 (2002).
[CrossRef]

1984

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Alic, N.

D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Asghari, M.

Audet, R. M.

Beals, M.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photon. 2, 433–437 (2008).
[CrossRef]

Bernardis, S.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photon. 2, 433–437 (2008).
[CrossRef]

Bijlani, B.

Bouville, D.

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, G. Isella, D. Chrastina, J.-R. Coudevylle, X. L. Roux, S. Edmond, D. Bouville, and L. Vivien, “Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells,” Appl. Phys. Letts. 102, 191107 (2013).
[CrossRef]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Canciamilla, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nature Comm. 2, 296 (2011).
[CrossRef]

Cassan, E.

Cecchi, S.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photon. 8, 482–488 (2014).
[CrossRef]

Chaisakul, P.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photon. 8, 482–488 (2014).
[CrossRef]

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, G. Isella, D. Chrastina, J.-R. Coudevylle, X. L. Roux, S. Edmond, D. Bouville, and L. Vivien, “Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells,” Appl. Phys. Letts. 102, 191107 (2013).
[CrossRef]

M. S. Rouifed, P. Chaisakul, D. Marris-Morini, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Quantum-confined Stark effect at 1.3μm in Ge/Si0.35Ge0.65 quantum-well structure,” Opt. Lett. 37, 3960–3962 (2012).
[CrossRef] [PubMed]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. L. Roux, E. Gatti, S. Edmond, J. Osmond, E. Cassan, and L. Vivien, “Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures,” Opt. Lett. 35, 2913–2915 (2010).
[CrossRef] [PubMed]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Cheng, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photon. 2, 433–437 (2008).
[CrossRef]

Chrastina, D.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photon. 8, 482–488 (2014).
[CrossRef]

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, G. Isella, D. Chrastina, J.-R. Coudevylle, X. L. Roux, S. Edmond, D. Bouville, and L. Vivien, “Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells,” Appl. Phys. Letts. 102, 191107 (2013).
[CrossRef]

M. S. Rouifed, P. Chaisakul, D. Marris-Morini, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Quantum-confined Stark effect at 1.3μm in Ge/Si0.35Ge0.65 quantum-well structure,” Opt. Lett. 37, 3960–3962 (2012).
[CrossRef] [PubMed]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. L. Roux, E. Gatti, S. Edmond, J. Osmond, E. Cassan, and L. Vivien, “Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures,” Opt. Lett. 35, 2913–2915 (2010).
[CrossRef] [PubMed]

Claussen, S.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Letts. 24, 461–463 (2012).
[CrossRef]

Claussen, S. A.

Coudevylle, J.-R.

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, G. Isella, D. Chrastina, J.-R. Coudevylle, X. L. Roux, S. Edmond, D. Bouville, and L. Vivien, “Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells,” Appl. Phys. Letts. 102, 191107 (2013).
[CrossRef]

M. S. Rouifed, P. Chaisakul, D. Marris-Morini, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Quantum-confined Stark effect at 1.3μm in Ge/Si0.35Ge0.65 quantum-well structure,” Opt. Lett. 37, 3960–3962 (2012).
[CrossRef] [PubMed]

Crozat, P.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photon. 8, 482–488 (2014).
[CrossRef]

Cunningham, J.

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Dobbie, A.

V. Shah, A. Dobbie, M. Myronov, and D. Leadley, “High quality relaxed Ge layers grown directly on a Si (001) substrate,” Solid-State Electron. 62, 189–194 (2011).
[CrossRef]

Docherty, K. E.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[CrossRef]

Edmond, S.

Edwards, E. H.

Fedeli, J. M.

D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Fei, E. T.

Feng, D.

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nature Comm. 2, 296 (2011).
[CrossRef]

Fidaner, O.

R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Select. Topics Quantum Elec. 14, 1082–1089 (2008).
[CrossRef]

Fong, J.

Frigerio, J.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photon. 8, 482–488 (2014).
[CrossRef]

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, G. Isella, D. Chrastina, J.-R. Coudevylle, X. L. Roux, S. Edmond, D. Bouville, and L. Vivien, “Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells,” Appl. Phys. Letts. 102, 191107 (2013).
[CrossRef]

M. S. Rouifed, P. Chaisakul, D. Marris-Morini, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Quantum-confined Stark effect at 1.3μm in Ge/Si0.35Ge0.65 quantum-well structure,” Opt. Lett. 37, 3960–3962 (2012).
[CrossRef] [PubMed]

Gallacher, K.

K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, and D. R. Leadley, “Ohmic contacts to n-type germanium with low specific contact resistivity,” Appl. Phys. Letts. 100, 022113 (2012).
[CrossRef]

Gardes, F.

D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon. 4, 518–526 (2010).
[CrossRef]

Gatti, E.

Ge, Y. S.

Y. H. Kuo, Y. K. Lee, Y. S. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Harris, J.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Letts. 24, 461–463 (2012).
[CrossRef]

Harris, J. S.

Hu, Y.

D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Ikonic, Z.

Isella, G.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photon. 8, 482–488 (2014).
[CrossRef]

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, G. Isella, D. Chrastina, J.-R. Coudevylle, X. L. Roux, S. Edmond, D. Bouville, and L. Vivien, “Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells,” Appl. Phys. Letts. 102, 191107 (2013).
[CrossRef]

M. S. Rouifed, P. Chaisakul, D. Marris-Morini, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Quantum-confined Stark effect at 1.3μm in Ge/Si0.35Ge0.65 quantum-well structure,” Opt. Lett. 37, 3960–3962 (2012).
[CrossRef] [PubMed]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. L. Roux, E. Gatti, S. Edmond, J. Osmond, E. Cassan, and L. Vivien, “Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures,” Opt. Lett. 35, 2913–2915 (2010).
[CrossRef] [PubMed]

Kamins, T.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Letts. 24, 461–463 (2012).
[CrossRef]

Kamins, T. I.

Kelsall, R. W.

Kimerling, L. C.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photon. 2, 433–437 (2008).
[CrossRef]

Krishnamoorthy, A. V.

Kuo, B. P. P.

D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Kuo, Y. H.

Y. H. Kuo, Y. K. Lee, Y. S. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Leadley, D.

V. Shah, A. Dobbie, M. Myronov, and D. Leadley, “High quality relaxed Ge layers grown directly on a Si (001) substrate,” Solid-State Electron. 62, 189–194 (2011).
[CrossRef]

Leadley, D. R.

K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, and D. R. Leadley, “Ohmic contacts to n-type germanium with low specific contact resistivity,” Appl. Phys. Letts. 100, 022113 (2012).
[CrossRef]

Lee, Y. K.

Y. H. Kuo, Y. K. Lee, Y. S. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Lever, L.

Li, X.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[CrossRef]

Liang, H.

Liao, S.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Liu, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photon. 2, 433–437 (2008).
[CrossRef]

Luff, B. J.

Luo, Y.

MacLaren, I.

K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, and D. R. Leadley, “Ohmic contacts to n-type germanium with low specific contact resistivity,” Appl. Phys. Letts. 100, 022113 (2012).
[CrossRef]

Marris-Morini, D.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photon. 8, 482–488 (2014).
[CrossRef]

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, G. Isella, D. Chrastina, J.-R. Coudevylle, X. L. Roux, S. Edmond, D. Bouville, and L. Vivien, “Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells,” Appl. Phys. Letts. 102, 191107 (2013).
[CrossRef]

M. S. Rouifed, P. Chaisakul, D. Marris-Morini, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Quantum-confined Stark effect at 1.3μm in Ge/Si0.35Ge0.65 quantum-well structure,” Opt. Lett. 37, 3960–3962 (2012).
[CrossRef] [PubMed]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. L. Roux, E. Gatti, S. Edmond, J. Osmond, E. Cassan, and L. Vivien, “Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures,” Opt. Lett. 35, 2913–2915 (2010).
[CrossRef] [PubMed]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon. 4, 518–526 (2010).
[CrossRef]

Mashanovich, G. Z.

D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Melloni, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nature Comm. 2, 296 (2011).
[CrossRef]

Michel, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photon. 2, 433–437 (2008).
[CrossRef]

Miller, D.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Letts. 24, 461–463 (2012).
[CrossRef]

R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Select. Topics Quantum Elec. 14, 1082–1089 (2008).
[CrossRef]

Miller, D. A. B.

E. H. Edwards, L. Lever, E. T. Fei, T. I. Kamins, Z. Ikonic, J. S. Harris, R. W. Kelsall, and D. A. B. Miller, “Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon,” Opt. Express 21, 867–876 (2013).
[CrossRef] [PubMed]

E. H. Edwards, R. M. Audet, E. T. Fei, S. A. Claussen, R. K. Schaevitz, E. Tasyurek, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe asymmetric Fabry-Perot quantum well electroabsorption modulators,” Opt. Express 20, 29164–29173 (2012).
[CrossRef]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Y. H. Kuo, Y. K. Lee, Y. S. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Mirza, M. M.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[CrossRef]

Morichetti, F.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nature Comm. 2, 296 (2011).
[CrossRef]

Myronov, M.

K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, and D. R. Leadley, “Ohmic contacts to n-type germanium with low specific contact resistivity,” Appl. Phys. Letts. 100, 022113 (2012).
[CrossRef]

V. Shah, A. Dobbie, M. Myronov, and D. Leadley, “High quality relaxed Ge layers grown directly on a Si (001) substrate,” Solid-State Electron. 62, 189–194 (2011).
[CrossRef]

Myslivets, E.

D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Osmond, J.

Paul, D. J.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[CrossRef]

K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, and D. R. Leadley, “Ohmic contacts to n-type germanium with low specific contact resistivity,” Appl. Phys. Letts. 100, 022113 (2012).
[CrossRef]

D. J. Paul, “The progress towards terahertz quantum cascade lasers on silicon substrates,” Laser & Photon. Rev. 4, 610–632 (2010).
[CrossRef]

D. J. Paul, “Silicon photonics: a bright future?” Elec. Lett. 45, 582–584 (2009).
[CrossRef]

D. J. Paul, “8-band k.p modeling of the quantum confined Stark effect in Ge quantum wells on Si substrates,” Phys. Rev. B 77, 155323 (2008).
[CrossRef]

Pomerene, A.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photon. 2, 433–437 (2008).
[CrossRef]

Poruba, A.

M. Vanecek and A. Poruba, “Fourier-transform photocurrent spectroscopy of microcrystalline silicon for solar cells,” Appl. Phys. Letts. 80, 719–721 (2002).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Radic, S.

D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Reed, G. T.

D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon. 4, 518–526 (2010).
[CrossRef]

Ren, S.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Letts. 24, 461–463 (2012).
[CrossRef]

R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Select. Topics Quantum Elec. 14, 1082–1089 (2008).
[CrossRef]

Y. H. Kuo, Y. K. Lee, Y. S. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Rong, Y.

E. H. Edwards, R. M. Audet, E. T. Fei, S. A. Claussen, R. K. Schaevitz, E. Tasyurek, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe asymmetric Fabry-Perot quantum well electroabsorption modulators,” Opt. Express 20, 29164–29173 (2012).
[CrossRef]

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Letts. 24, 461–463 (2012).
[CrossRef]

Roth, J.

R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Select. Topics Quantum Elec. 14, 1082–1089 (2008).
[CrossRef]

Roth, J. E.

Y. H. Kuo, Y. K. Lee, Y. S. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Rouifed, M. S.

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, G. Isella, D. Chrastina, J.-R. Coudevylle, X. L. Roux, S. Edmond, D. Bouville, and L. Vivien, “Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells,” Appl. Phys. Letts. 102, 191107 (2013).
[CrossRef]

M. S. Rouifed, P. Chaisakul, D. Marris-Morini, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Quantum-confined Stark effect at 1.3μm in Ge/Si0.35Ge0.65 quantum-well structure,” Opt. Lett. 37, 3960–3962 (2012).
[CrossRef] [PubMed]

Rouifed, M.-S.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photon. 8, 482–488 (2014).
[CrossRef]

Roux, X. L.

Samarelli, A.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[CrossRef]

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nature Comm. 2, 296 (2011).
[CrossRef]

Schaevitz, R.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Letts. 24, 461–463 (2012).
[CrossRef]

R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Select. Topics Quantum Elec. 14, 1082–1089 (2008).
[CrossRef]

Schaevitz, R. K.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Shafiiha, R.

Shah, V.

V. Shah, A. Dobbie, M. Myronov, and D. Leadley, “High quality relaxed Ge layers grown directly on a Si (001) substrate,” Solid-State Electron. 62, 189–194 (2011).
[CrossRef]

Sorel, M.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nature Comm. 2, 296 (2011).
[CrossRef]

Sun, R.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photon. 2, 433–437 (2008).
[CrossRef]

Tasyurek, E.

Ternent, G.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[CrossRef]

Thomson, D. J.

D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon. 4, 518–526 (2010).
[CrossRef]

Vanecek, M.

M. Vanecek and A. Poruba, “Fourier-transform photocurrent spectroscopy of microcrystalline silicon for solar cells,” Appl. Phys. Letts. 80, 719–721 (2002).
[CrossRef]

Velha, P.

K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, and D. R. Leadley, “Ohmic contacts to n-type germanium with low specific contact resistivity,” Appl. Phys. Letts. 100, 022113 (2012).
[CrossRef]

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[CrossRef]

Vivien, L.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photon. 8, 482–488 (2014).
[CrossRef]

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, G. Isella, D. Chrastina, J.-R. Coudevylle, X. L. Roux, S. Edmond, D. Bouville, and L. Vivien, “Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells,” Appl. Phys. Letts. 102, 191107 (2013).
[CrossRef]

M. S. Rouifed, P. Chaisakul, D. Marris-Morini, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Quantum-confined Stark effect at 1.3μm in Ge/Si0.35Ge0.65 quantum-well structure,” Opt. Lett. 37, 3960–3962 (2012).
[CrossRef] [PubMed]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. L. Roux, E. Gatti, S. Edmond, J. Osmond, E. Cassan, and L. Vivien, “Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures,” Opt. Lett. 35, 2913–2915 (2010).
[CrossRef] [PubMed]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Zhou, H.

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[CrossRef]

Zlatanovic, S.

D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Appl. Phys. Letts.

P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, G. Isella, D. Chrastina, J.-R. Coudevylle, X. L. Roux, S. Edmond, D. Bouville, and L. Vivien, “Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells,” Appl. Phys. Letts. 102, 191107 (2013).
[CrossRef]

K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, and D. R. Leadley, “Ohmic contacts to n-type germanium with low specific contact resistivity,” Appl. Phys. Letts. 100, 022113 (2012).
[CrossRef]

M. Vanecek and A. Poruba, “Fourier-transform photocurrent spectroscopy of microcrystalline silicon for solar cells,” Appl. Phys. Letts. 80, 719–721 (2002).
[CrossRef]

Elec. Lett.

D. J. Paul, “Silicon photonics: a bright future?” Elec. Lett. 45, 582–584 (2009).
[CrossRef]

IEEE J. Select. Topics Quantum Elec.

R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Select. Topics Quantum Elec. 14, 1082–1089 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

IEEE Photon. Technol. Letts.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Letts. 24, 461–463 (2012).
[CrossRef]

J. Vac. Sci. Technol. B

M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
[CrossRef]

Laser & Photon. Rev.

D. J. Paul, “The progress towards terahertz quantum cascade lasers on silicon substrates,” Laser & Photon. Rev. 4, 610–632 (2010).
[CrossRef]

Nature

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Y. H. Kuo, Y. K. Lee, Y. S. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[CrossRef] [PubMed]

Nature Comm.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nature Comm. 2, 296 (2011).
[CrossRef]

Nature Photon.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon. 4, 518–526 (2010).
[CrossRef]

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photon. 2, 433–437 (2008).
[CrossRef]

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photon. 8, 482–488 (2014).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

D. J. Paul, “8-band k.p modeling of the quantum confined Stark effect in Ge quantum wells on Si substrates,” Phys. Rev. B 77, 155323 (2008).
[CrossRef]

Phys. Rev. Lett.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Proc. IEEE

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Solid-State Electron.

V. Shah, A. Dobbie, M. Myronov, and D. Leadley, “High quality relaxed Ge layers grown directly on a Si (001) substrate,” Solid-State Electron. 62, 189–194 (2011).
[CrossRef]

Other

Semiconductor Industry Association, “International technology roadmap for semiconductors,” Tech. rep., Semiconductor Industry Association (2013).

( http://www.nextnano.de/nextnano3/ ).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The calculated wavefunctions for Γ1, HH1 and LH1 of a 13.6 nm wide Ge QW at applied bias voltages of −0.5 V (left) and 1 V (right) for 0.2% tensile strain. As the applied bias is increased the hole and electron energy levels move closer together and the overlap of the wavefunctions decreases. (b) The calculated absorption spectrum from single QW simulations for a 13.6 nm QW QCSE device with Si0.18Ge0.82 barriers on a strained Si0.04Ge0.96 buffer layer for different levels of tensile strain for TE and TM polarizations.

Fig. 2
Fig. 2

(a) The calculated absorption spectra for a single quantum well for the three structures grown with Ge QWs and Si0.18Ge0.82 barriers on Si0.04Ge0.96 virtual substrates. (b) The measured experimental absorption for the same three QW widths. (c) An optical microscope image of the top spider contact on top of the photodetector device used for measurements.

Fig. 3
Fig. 3

A TEM image showing the Ge cap and top spacer then the Si0.18Ge0.82 barriers and Ge QWs closest to the surface of the wafer for the sample with the widest QWs.

Fig. 4
Fig. 4

(a) The calculated absorption spectra for the 11.3 nm QW device at applied bias voltages from 0 V to 3 V. (b) The experimental absorption coefficients as a function of applied reverse bias for the 11.3 nm Ge QW QCSE diodes as measured with a TLS.

Fig. 5
Fig. 5

(a) The experimentally measured contrast ratio for the 11.3 nm Ge QW device with a voltage swing of 1.0 V for bias voltages from 0.0 V to 2.0 V. (b) The calculated contrast ratio for a single 11.3 nm Ge QW simulation of the QCSE structure. The bias voltages was swept from 0 V to 2 V with a swing voltage of 1.0 V.

Tables (1)

Tables Icon

Table 1 The layer thickness as extracted by TEM and the composition extracted by XRD for the three designed wafers.

Metrics