Abstract

We utilize a high quality calcium fluoride whispering-gallery-mode resonator to passively stabilize a simple erbium doped fiber ring laser with an emission frequency of 196THz (wavelength 1530nm) to an instantaneous linewidth below 650Hz. This corresponds to a relative stability of 3.3 × 10−12 over 16μs. In order to characterize the linewidth we use two identical self-built lasers and a commercial laser to determine the individual lasing linewidth via the three-cornered-hat method. We further show that the lasers are finely tunable throughout the erbium gain region.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. N. Lea, “Limits to time variation of fundamental constants from comparisons of atomic frequency standards,” Rep. Prog. Phys. 70, 1473–1523 (2007).
    [CrossRef]
  2. M. Baaske and F. Vollmer, “Optical resonator biosensors: Molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem 13, 427–436 (2012).
    [CrossRef] [PubMed]
  3. G. N. Conti, S. Berneschi, A. Barucci, F. Cosi, S. Soria, and C. Trono, “Fiber ring laser for intracavity sensing using a whispering-gallery-mode resonator,” Opt. Lett. 37, 2697–2699 (2012).
    [CrossRef]
  4. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef] [PubMed]
  5. I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Comm. 265, 33–38 (2006).
    [CrossRef]
  6. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
    [CrossRef] [PubMed]
  7. A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. B 24, 1324–1335 (2007).
    [CrossRef]
  8. W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
    [CrossRef] [PubMed]
  9. E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).
  10. J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
    [CrossRef]
  11. K. Numata, A. Kemery, and J. Camp, “Thermal-Noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
    [CrossRef]
  12. A. Chijioke, Q.-F. Chen, A. Y. Nevsky, and S. Schiller, “Thermal noise of whispering-gallery resonators,” Phys. Rev. A 85, 053814 (2012).
    [CrossRef]
  13. B. Sprenger, H. G. L. Schwefel, Z. H. Lu, S. Svitlov, and L. J. Wang, “CaF2 whispering-gallery-mode-resonator stabilized-narrow-linewidth laser,” Opt. Lett. 35, 2870–2872 (2010).
    [CrossRef] [PubMed]
  14. L. M. Baumgartel, R. J. Thompson, and N. Yu, “Frequency stability of a dual-mode whispering gallery mode optical reference cavity,” Opt. Express 20, 29798–29806 (2012).
    [CrossRef]
  15. I. Fescenko, J. Alnis, A. Schliesser, C. Y. Wang, T. J. Kippenberg, and T. W. Hänsch, “Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator,” Opt. Express 20, 19185–19193 (2012).
    [CrossRef] [PubMed]
  16. J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
  17. H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
    [CrossRef]
  18. Y. K. Chembo, L. M. Baumgartel, and N. Yu, “Toward whispering-gallery-mode disk resonators for metrological applications,” SPIE Newsroom (2012).
    [CrossRef]
  19. J. Li, H. Lee, and K. J. Vahala, “Low-noise brillouin laser on a chip at 1064 nm,” Opt. Lett. 39, 287–290 (2014).
    [CrossRef] [PubMed]
  20. K. Kieu and M. Mansuripur, “Active Q switching of a fiber laser with a microsphere resonator,” Opt. Lett. 31, 3568–3570 (2006).
    [CrossRef] [PubMed]
  21. K. Kieu and M. Mansuripur, “Fiber laser using a microsphere resonator as a feedback element,” Opt. Lett. 32, 244–246 (2007).
    [CrossRef] [PubMed]
  22. B. Sprenger, H. G. L. Schwefel, and L. J. Wang, “Whispering-gallery-mode-resonator-stabilized narrow-linewidth fiber loop laser,” Opt. Lett. 34, 3370–3372 (2009).
    [CrossRef] [PubMed]
  23. L. Wang, “Causal ‘all-pass’ filters and Kramers-Kronig relations,” Opt. Comm. 213, 27–32 (2002).
    [CrossRef]
  24. M. Eichhorn and M. Pollnau, “The Q-factor of a continuous-wave laser,” CLEO: Science and Innovations (2012).
  25. A. H. Safavi-Naeini, private communications.
  26. E. Rubiola, “On the measurement of frequency and of its sample variance with high-resolution counters,” Rev. Sci. Instr. 76, 054703 (2005).
    [CrossRef]
  27. D. Allan, H. Hellwig, P. Kartaschoff, J. Vanier, J. Vig, G. Winkler, and N. Yannoni, “Standard terminology for fundamental frequency and time metrology,” in “Frequency Control Symposium, 1988., Proceedings of the 42nd Annual,” (1988), pp. 419–425.
  28. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE T. Instrum. Meas. IM-20, 105–120 (1971).
    [CrossRef]
  29. J. Gray and D. Allan, “A method for estimating the frequency stability of an individual oscillator,” in “28th Annual Symposium on Frequency Control. 1974,” (1974), pp. 243–246.
  30. E. de Carlos López and J. M. López Romero, “Frequency stability estimation of semiconductor lasers using the three-cornered hat method,” (2006).
  31. A. Premoli and P. Tavella, “A revisited three-cornered hat method for estimating frequency standard instability,” IEEE Trans. Instrum. Meas. 42, 7–13 (1993).
    [CrossRef]

2014 (2)

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

J. Li, H. Lee, and K. J. Vahala, “Low-noise brillouin laser on a chip at 1064 nm,” Opt. Lett. 39, 287–290 (2014).
[CrossRef] [PubMed]

2013 (2)

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[CrossRef]

2012 (5)

2011 (1)

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[CrossRef]

2010 (2)

2009 (1)

2007 (4)

K. Kieu and M. Mansuripur, “Fiber laser using a microsphere resonator as a feedback element,” Opt. Lett. 32, 244–246 (2007).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. B 24, 1324–1335 (2007).
[CrossRef]

S. N. Lea, “Limits to time variation of fundamental constants from comparisons of atomic frequency standards,” Rep. Prog. Phys. 70, 1473–1523 (2007).
[CrossRef]

2006 (2)

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Comm. 265, 33–38 (2006).
[CrossRef]

K. Kieu and M. Mansuripur, “Active Q switching of a fiber laser with a microsphere resonator,” Opt. Lett. 31, 3568–3570 (2006).
[CrossRef] [PubMed]

2005 (1)

E. Rubiola, “On the measurement of frequency and of its sample variance with high-resolution counters,” Rev. Sci. Instr. 76, 054703 (2005).
[CrossRef]

2004 (1)

K. Numata, A. Kemery, and J. Camp, “Thermal-Noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[CrossRef]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

2002 (1)

L. Wang, “Causal ‘all-pass’ filters and Kramers-Kronig relations,” Opt. Comm. 213, 27–32 (2002).
[CrossRef]

1993 (1)

A. Premoli and P. Tavella, “A revisited three-cornered hat method for estimating frequency standard instability,” IEEE Trans. Instrum. Meas. 42, 7–13 (1993).
[CrossRef]

1971 (1)

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE T. Instrum. Meas. IM-20, 105–120 (1971).
[CrossRef]

Allan, D.

D. Allan, H. Hellwig, P. Kartaschoff, J. Vanier, J. Vig, G. Winkler, and N. Yannoni, “Standard terminology for fundamental frequency and time metrology,” in “Frequency Control Symposium, 1988., Proceedings of the 42nd Annual,” (1988), pp. 419–425.

J. Gray and D. Allan, “A method for estimating the frequency stability of an individual oscillator,” in “28th Annual Symposium on Frequency Control. 1974,” (1974), pp. 243–246.

Alnis, J.

I. Fescenko, J. Alnis, A. Schliesser, C. Y. Wang, T. J. Kippenberg, and T. W. Hänsch, “Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator,” Opt. Express 20, 19185–19193 (2012).
[CrossRef] [PubMed]

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[CrossRef]

Baaske, M.

M. Baaske and F. Vollmer, “Optical resonator biosensors: Molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem 13, 427–436 (2012).
[CrossRef] [PubMed]

Barnes, J. A.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE T. Instrum. Meas. IM-20, 105–120 (1971).
[CrossRef]

Barucci, A.

Baumgartel, L. M.

L. M. Baumgartel, R. J. Thompson, and N. Yu, “Frequency stability of a dual-mode whispering gallery mode optical reference cavity,” Opt. Express 20, 29798–29806 (2012).
[CrossRef]

Y. K. Chembo, L. M. Baumgartel, and N. Yu, “Toward whispering-gallery-mode disk resonators for metrological applications,” SPIE Newsroom (2012).
[CrossRef]

Berneschi, S.

Camp, J.

K. Numata, A. Kemery, and J. Camp, “Thermal-Noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[CrossRef]

Chembo, Y. K.

Y. K. Chembo, L. M. Baumgartel, and N. Yu, “Toward whispering-gallery-mode disk resonators for metrological applications,” SPIE Newsroom (2012).
[CrossRef]

Chen, Q.-F.

A. Chijioke, Q.-F. Chen, A. Y. Nevsky, and S. Schiller, “Thermal noise of whispering-gallery resonators,” Phys. Rev. A 85, 053814 (2012).
[CrossRef]

Chen, T.

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[CrossRef]

Chi, A. R.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE T. Instrum. Meas. IM-20, 105–120 (1971).
[CrossRef]

Chijioke, A.

A. Chijioke, Q.-F. Chen, A. Y. Nevsky, and S. Schiller, “Thermal noise of whispering-gallery resonators,” Phys. Rev. A 85, 053814 (2012).
[CrossRef]

Conti, G. N.

Cosi, F.

Cutler, L. S.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE T. Instrum. Meas. IM-20, 105–120 (1971).
[CrossRef]

Dale, E.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

de Carlos López, E.

E. de Carlos López and J. M. López Romero, “Frequency stability estimation of semiconductor lasers using the three-cornered hat method,” (2006).

Diddams, S. A.

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[CrossRef]

Eichhorn, M.

M. Eichhorn and M. Pollnau, “The Q-factor of a continuous-wave laser,” CLEO: Science and Innovations (2012).

Eliyahu, D.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

Fescenko, I.

Gray, J.

J. Gray and D. Allan, “A method for estimating the frequency stability of an individual oscillator,” in “28th Annual Symposium on Frequency Control. 1974,” (1974), pp. 243–246.

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Comm. 265, 33–38 (2006).
[CrossRef]

Hänsch, T. W.

I. Fescenko, J. Alnis, A. Schliesser, C. Y. Wang, T. J. Kippenberg, and T. W. Hänsch, “Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator,” Opt. Express 20, 19185–19193 (2012).
[CrossRef] [PubMed]

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[CrossRef]

Healey, D. J.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE T. Instrum. Meas. IM-20, 105–120 (1971).
[CrossRef]

Hellwig, H.

D. Allan, H. Hellwig, P. Kartaschoff, J. Vanier, J. Vig, G. Winkler, and N. Yannoni, “Standard terminology for fundamental frequency and time metrology,” in “Frequency Control Symposium, 1988., Proceedings of the 42nd Annual,” (1988), pp. 419–425.

Hofer, J.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[CrossRef]

Ilchenko, V. S.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[CrossRef] [PubMed]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Comm. 265, 33–38 (2006).
[CrossRef]

Kartaschoff, P.

D. Allan, H. Hellwig, P. Kartaschoff, J. Vanier, J. Vig, G. Winkler, and N. Yannoni, “Standard terminology for fundamental frequency and time metrology,” in “Frequency Control Symposium, 1988., Proceedings of the 42nd Annual,” (1988), pp. 419–425.

Kemery, A.

K. Numata, A. Kemery, and J. Camp, “Thermal-Noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[CrossRef]

Kieu, K.

Kippenberg, T. J.

I. Fescenko, J. Alnis, A. Schliesser, C. Y. Wang, T. J. Kippenberg, and T. W. Hänsch, “Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator,” Opt. Express 20, 19185–19193 (2012).
[CrossRef] [PubMed]

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[CrossRef]

Lea, S. N.

S. N. Lea, “Limits to time variation of fundamental constants from comparisons of atomic frequency standards,” Rep. Prog. Phys. 70, 1473–1523 (2007).
[CrossRef]

Lee, H.

J. Li, H. Lee, and K. J. Vahala, “Low-noise brillouin laser on a chip at 1064 nm,” Opt. Lett. 39, 287–290 (2014).
[CrossRef] [PubMed]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[CrossRef]

Leeson, D. B.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE T. Instrum. Meas. IM-20, 105–120 (1971).
[CrossRef]

Li, J.

J. Li, H. Lee, and K. J. Vahala, “Low-noise brillouin laser on a chip at 1064 nm,” Opt. Lett. 39, 287–290 (2014).
[CrossRef] [PubMed]

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[CrossRef]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).

Liang, W.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[CrossRef] [PubMed]

López Romero, J. M.

E. de Carlos López and J. M. López Romero, “Frequency stability estimation of semiconductor lasers using the three-cornered hat method,” (2006).

Lu, Z. H.

Maleki, L.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. B 24, 1324–1335 (2007).
[CrossRef]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Comm. 265, 33–38 (2006).
[CrossRef]

Mansuripur, M.

Matsko, A. B.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. B 24, 1324–1335 (2007).
[CrossRef]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Comm. 265, 33–38 (2006).
[CrossRef]

McGunigal, T. E.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE T. Instrum. Meas. IM-20, 105–120 (1971).
[CrossRef]

Mullen, J. A.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE T. Instrum. Meas. IM-20, 105–120 (1971).
[CrossRef]

Nevsky, A. Y.

A. Chijioke, Q.-F. Chen, A. Y. Nevsky, and S. Schiller, “Thermal noise of whispering-gallery resonators,” Phys. Rev. A 85, 053814 (2012).
[CrossRef]

Numata, K.

K. Numata, A. Kemery, and J. Camp, “Thermal-Noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[CrossRef]

Pollnau, M.

M. Eichhorn and M. Pollnau, “The Q-factor of a continuous-wave laser,” CLEO: Science and Innovations (2012).

Premoli, A.

A. Premoli and P. Tavella, “A revisited three-cornered hat method for estimating frequency standard instability,” IEEE Trans. Instrum. Meas. 42, 7–13 (1993).
[CrossRef]

Rubiola, E.

E. Rubiola, “On the measurement of frequency and of its sample variance with high-resolution counters,” Rev. Sci. Instr. 76, 054703 (2005).
[CrossRef]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, private communications.

Savchenkov, A. A.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. B 24, 1324–1335 (2007).
[CrossRef]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Comm. 265, 33–38 (2006).
[CrossRef]

Schiller, S.

A. Chijioke, Q.-F. Chen, A. Y. Nevsky, and S. Schiller, “Thermal noise of whispering-gallery resonators,” Phys. Rev. A 85, 053814 (2012).
[CrossRef]

Schliesser, A.

I. Fescenko, J. Alnis, A. Schliesser, C. Y. Wang, T. J. Kippenberg, and T. W. Hänsch, “Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator,” Opt. Express 20, 19185–19193 (2012).
[CrossRef] [PubMed]

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[CrossRef]

Schwefel, H. G. L.

Seidel, D.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[CrossRef] [PubMed]

Smith, W. L.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE T. Instrum. Meas. IM-20, 105–120 (1971).
[CrossRef]

Soria, S.

Sprenger, B.

Strekalov, D.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Comm. 265, 33–38 (2006).
[CrossRef]

Suh, M.-G.

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[CrossRef]

Svitlov, S.

Sydnor, R. L.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE T. Instrum. Meas. IM-20, 105–120 (1971).
[CrossRef]

Tavella, P.

A. Premoli and P. Tavella, “A revisited three-cornered hat method for estimating frequency standard instability,” IEEE Trans. Instrum. Meas. 42, 7–13 (1993).
[CrossRef]

Thompson, R. J.

Trono, C.

Vahala, K. J.

J. Li, H. Lee, and K. J. Vahala, “Low-noise brillouin laser on a chip at 1064 nm,” Opt. Lett. 39, 287–290 (2014).
[CrossRef] [PubMed]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Vanier, J.

D. Allan, H. Hellwig, P. Kartaschoff, J. Vanier, J. Vig, G. Winkler, and N. Yannoni, “Standard terminology for fundamental frequency and time metrology,” in “Frequency Control Symposium, 1988., Proceedings of the 42nd Annual,” (1988), pp. 419–425.

Vessot, R. F. C.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE T. Instrum. Meas. IM-20, 105–120 (1971).
[CrossRef]

Vig, J.

D. Allan, H. Hellwig, P. Kartaschoff, J. Vanier, J. Vig, G. Winkler, and N. Yannoni, “Standard terminology for fundamental frequency and time metrology,” in “Frequency Control Symposium, 1988., Proceedings of the 42nd Annual,” (1988), pp. 419–425.

Vollmer, F.

M. Baaske and F. Vollmer, “Optical resonator biosensors: Molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem 13, 427–436 (2012).
[CrossRef] [PubMed]

Wang, C. Y.

I. Fescenko, J. Alnis, A. Schliesser, C. Y. Wang, T. J. Kippenberg, and T. W. Hänsch, “Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator,” Opt. Express 20, 19185–19193 (2012).
[CrossRef] [PubMed]

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[CrossRef]

Wang, L.

L. Wang, “Causal ‘all-pass’ filters and Kramers-Kronig relations,” Opt. Comm. 213, 27–32 (2002).
[CrossRef]

Wang, L. J.

Winkler, G.

D. Allan, H. Hellwig, P. Kartaschoff, J. Vanier, J. Vig, G. Winkler, and N. Yannoni, “Standard terminology for fundamental frequency and time metrology,” in “Frequency Control Symposium, 1988., Proceedings of the 42nd Annual,” (1988), pp. 419–425.

Winkler, G. M. R.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE T. Instrum. Meas. IM-20, 105–120 (1971).
[CrossRef]

Yannoni, N.

D. Allan, H. Hellwig, P. Kartaschoff, J. Vanier, J. Vig, G. Winkler, and N. Yannoni, “Standard terminology for fundamental frequency and time metrology,” in “Frequency Control Symposium, 1988., Proceedings of the 42nd Annual,” (1988), pp. 419–425.

Yu, N.

L. M. Baumgartel, R. J. Thompson, and N. Yu, “Frequency stability of a dual-mode whispering gallery mode optical reference cavity,” Opt. Express 20, 29798–29806 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. B 24, 1324–1335 (2007).
[CrossRef]

Y. K. Chembo, L. M. Baumgartel, and N. Yu, “Toward whispering-gallery-mode disk resonators for metrological applications,” SPIE Newsroom (2012).
[CrossRef]

ChemPhysChem (1)

M. Baaske and F. Vollmer, “Optical resonator biosensors: Molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem 13, 427–436 (2012).
[CrossRef] [PubMed]

IEEE T. Instrum. Meas. (1)

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE T. Instrum. Meas. IM-20, 105–120 (1971).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

A. Premoli and P. Tavella, “A revisited three-cornered hat method for estimating frequency standard instability,” IEEE Trans. Instrum. Meas. 42, 7–13 (1993).
[CrossRef]

J. Opt. Soc. B (1)

A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. B 24, 1324–1335 (2007).
[CrossRef]

Nat. Commun. (2)

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[CrossRef]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Opt. Comm. (2)

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Comm. 265, 33–38 (2006).
[CrossRef]

L. Wang, “Causal ‘all-pass’ filters and Kramers-Kronig relations,” Opt. Comm. 213, 27–32 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

Phys. Rev. A (2)

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[CrossRef]

A. Chijioke, Q.-F. Chen, A. Y. Nevsky, and S. Schiller, “Thermal noise of whispering-gallery resonators,” Phys. Rev. A 85, 053814 (2012).
[CrossRef]

Phys. Rev. Lett. (1)

K. Numata, A. Kemery, and J. Camp, “Thermal-Noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[CrossRef]

Proc. SPIE (1)

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

Rep. Prog. Phys. (1)

S. N. Lea, “Limits to time variation of fundamental constants from comparisons of atomic frequency standards,” Rep. Prog. Phys. 70, 1473–1523 (2007).
[CrossRef]

Rev. Sci. Instr. (1)

E. Rubiola, “On the measurement of frequency and of its sample variance with high-resolution counters,” Rev. Sci. Instr. 76, 054703 (2005).
[CrossRef]

Other (6)

D. Allan, H. Hellwig, P. Kartaschoff, J. Vanier, J. Vig, G. Winkler, and N. Yannoni, “Standard terminology for fundamental frequency and time metrology,” in “Frequency Control Symposium, 1988., Proceedings of the 42nd Annual,” (1988), pp. 419–425.

J. Gray and D. Allan, “A method for estimating the frequency stability of an individual oscillator,” in “28th Annual Symposium on Frequency Control. 1974,” (1974), pp. 243–246.

E. de Carlos López and J. M. López Romero, “Frequency stability estimation of semiconductor lasers using the three-cornered hat method,” (2006).

M. Eichhorn and M. Pollnau, “The Q-factor of a continuous-wave laser,” CLEO: Science and Innovations (2012).

A. H. Safavi-Naeini, private communications.

Y. K. Chembo, L. M. Baumgartel, and N. Yu, “Toward whispering-gallery-mode disk resonators for metrological applications,” SPIE Newsroom (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Sketch of one of the whispering gallery mode resonator filtered lasers. The active medium is an erbium doped fiber with an emission spectrum in the telecommunication C-band. Broad shaping of the emission spectrum is achieved by a bandpass filter. Passive filtering of the conventional telecom fiber loop lasing modes is provided by a WGM resonator. Precise tunable single mode lasing is obtained without further active stabilization techniques. (b) Photograph of the WGM resonator sandwiched by the two prisms.

Fig. 2
Fig. 2

(a) Computationally determined phase noise including a fit of a Lorentzian at a central frequency of f0 = 9.468MHz. (b) Extracted oscillation frequencies of the beat notes of the three different lasers beat a the same time.

Fig. 3
Fig. 3

Allan deviation values (corresponding to lasing linewidth in Hz) and relative stabilities (corresponding to lasing Q factor) for the whispering gallery lasers (WGL). (a) Direct evaluation of the beat note signal between WGL1 and WGL2 reports the combination of both noise sources. (b) Individual noise components were obtained via the three-cornered hat method, a possible correlation was taken into account.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ 2 = 1 2 ( M 1 ) i = 1 M 1 ( f i f i + 1 ) 2
2 σ WGL 1 2 = σ WGL 1 + WGL 2 2 + σ WGL 1 + DLpro 2 σ WGL 2 + DLpro 2

Metrics