Abstract

In this paper, the excitations of surface plasmon polaritons (SPPs) by both perpendicular and parallel electron beam are investigated. The results of analytical theory and numerical calculation show that the mechanisms of these two excitations are essentially different, and the behavior and properties of SPPs in metal structures strongly depend on the methods of excitation. For the perpendicular excitation, SPPs contain plenty of frequency components, propagate with attenuation and are always accompanied with the transition radiation. Whereas for parallel excitation, SPPs waves are coherent, tunable, propagating without attenuation and the transition radiation does not occur. We also show that there are two modes for the parallel excited SPPs on the metal films and they all can be excited efficiently by the parallel moving electron beam. And the operating frequency of SPPs can be tuned in a large frequency range by adjusting the beam energy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin Heidelberg, 1988).
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [CrossRef]
  3. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  4. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [CrossRef] [PubMed]
  5. D. W. Pohl, Near-field optics and the surface plasmon polariton (Springer-Verlag, Berlin Heidelberg, 2001).
  6. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  7. S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
    [CrossRef] [PubMed]
  8. S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
    [CrossRef]
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  10. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission though subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [CrossRef]
  11. D. Yang, T. Li, L. Rao, S. Xia, and L. Zhang, “Terahertz functional devices based on photonic crystal and surface plasmon polaritons,” Terahertz Science and Technology 5, 131–143 (2012).
  12. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
    [CrossRef]
  13. F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
    [CrossRef]
  14. M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
    [CrossRef] [PubMed]
  15. W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
    [CrossRef] [PubMed]
  16. J. Zhou, M. Hu, Y. Zhang, P. Zhang, W. Liu, and S. Liu, “Numerical analysis of electron-induced surface plasmon excitation using the FDTD method,” J. Opt. 13(3), 035003 (2011).
    [CrossRef]
  17. M. Hu, Y. Zhang, Y. Yang, B. Zhong, and S. Liu, “Terahertz radiation from interaction between an electron beam and a planar surface plasmon structure,” Chin.Phys.B. 18(9), 3877–3882 (2009).
    [CrossRef]
  18. J. Lecante, Y. Ballu, and D. M. Newns, “Electron-surface-plasmon scattering using a parabolic nontouching trajectory,” Phys. Rev. Lett. 38(1), 36–40 (1977).
    [CrossRef]
  19. J. H. Brownell, J. Walsh, and G. Doucas, “Spontaneous smith-purcell radiation described through induced surface currents,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 1075–1080 (1998).
    [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, 1985).
  21. N.W. Ashcroft and N. Mermin, Solid state physics (Thomson Learning, Toronto, Canada, 1976).
  22. P. Drude, “Zur elektronentheorie der metalle,” Ann. Phys. 306(3), 566–613 (1900).
    [CrossRef]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  24. F. G. Bass and V. M. Yakovenko, “Theory of radiation from a charge passing through an electrically inhomogeneous medium,” Sov. Phys. Usp. 8(3), 420–444 (1965).
    [CrossRef]
  25. S. Liu, Relativistic electronics (Science Press, Beijing, 1987).
  26. V. L. Ginzburg and V. N. Tsytovich, Transition radiation and transition scattering (Adam Hilger, Bristol and New York, 1990)
  27. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal,” Phys. Rep. 113(4), 195–287 (1984).
    [CrossRef]
  28. S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602 (2009).
    [CrossRef] [PubMed]
  29. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
    [CrossRef] [PubMed]
  30. M. V. Bashevoy, F. Jonsson, K. F. Macdonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express 15(18), 11313–11320 (2007).
    [CrossRef] [PubMed]

2014

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[CrossRef]

2012

D. Yang, T. Li, L. Rao, S. Xia, and L. Zhang, “Terahertz functional devices based on photonic crystal and surface plasmon polaritons,” Terahertz Science and Technology 5, 131–143 (2012).

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[CrossRef] [PubMed]

2011

J. Zhou, M. Hu, Y. Zhang, P. Zhang, W. Liu, and S. Liu, “Numerical analysis of electron-induced surface plasmon excitation using the FDTD method,” J. Opt. 13(3), 035003 (2011).
[CrossRef]

2010

F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[CrossRef]

2009

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[CrossRef] [PubMed]

M. Hu, Y. Zhang, Y. Yang, B. Zhong, and S. Liu, “Terahertz radiation from interaction between an electron beam and a planar surface plasmon structure,” Chin.Phys.B. 18(9), 3877–3882 (2009).
[CrossRef]

S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602 (2009).
[CrossRef] [PubMed]

2007

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

M. V. Bashevoy, F. Jonsson, K. F. Macdonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express 15(18), 11313–11320 (2007).
[CrossRef] [PubMed]

2006

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

2005

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

2004

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

2003

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1998

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission though subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

J. H. Brownell, J. Walsh, and G. Doucas, “Spontaneous smith-purcell radiation described through induced surface currents,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 1075–1080 (1998).
[CrossRef]

1984

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

1977

J. Lecante, Y. Ballu, and D. M. Newns, “Electron-surface-plasmon scattering using a parabolic nontouching trajectory,” Phys. Rev. Lett. 38(1), 36–40 (1977).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1965

F. G. Bass and V. M. Yakovenko, “Theory of radiation from a charge passing through an electrically inhomogeneous medium,” Sov. Phys. Usp. 8(3), 420–444 (1965).
[CrossRef]

1900

P. Drude, “Zur elektronentheorie der metalle,” Ann. Phys. 306(3), 566–613 (1900).
[CrossRef]

Ballu, Y.

J. Lecante, Y. Ballu, and D. M. Newns, “Electron-surface-plasmon scattering using a parabolic nontouching trajectory,” Phys. Rev. Lett. 38(1), 36–40 (1977).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bashevoy, M. V.

M. V. Bashevoy, F. Jonsson, K. F. Macdonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express 15(18), 11313–11320 (2007).
[CrossRef] [PubMed]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

Bass, F. G.

F. G. Bass and V. M. Yakovenko, “Theory of radiation from a charge passing through an electrically inhomogeneous medium,” Sov. Phys. Usp. 8(3), 420–444 (1965).
[CrossRef]

Brownell, J. H.

J. H. Brownell, J. Walsh, and G. Doucas, “Spontaneous smith-purcell radiation described through induced surface currents,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 1075–1080 (1998).
[CrossRef]

Cai, W.

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[CrossRef] [PubMed]

Chen, X.

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[CrossRef]

Chen, Y.

M. V. Bashevoy, F. Jonsson, K. F. Macdonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express 15(18), 11313–11320 (2007).
[CrossRef] [PubMed]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

de Abajo, F. J. G.

F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[CrossRef]

de Waele, R.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Doucas, G.

J. H. Brownell, J. Walsh, and G. Doucas, “Spontaneous smith-purcell radiation described through induced surface currents,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 1075–1080 (1998).
[CrossRef]

Drude, P.

P. Drude, “Zur elektronentheorie der metalle,” Ann. Phys. 306(3), 566–613 (1900).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission though subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

García de Abajo, F. J.

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission though subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Gong, S.

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[CrossRef]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission though subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Hu, M.

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[CrossRef]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[CrossRef] [PubMed]

J. Zhou, M. Hu, Y. Zhang, P. Zhang, W. Liu, and S. Liu, “Numerical analysis of electron-induced surface plasmon excitation using the FDTD method,” J. Opt. 13(3), 035003 (2011).
[CrossRef]

S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602 (2009).
[CrossRef] [PubMed]

M. Hu, Y. Zhang, Y. Yang, B. Zhong, and S. Liu, “Terahertz radiation from interaction between an electron beam and a planar surface plasmon structure,” Chin.Phys.B. 18(9), 3877–3882 (2009).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Jonsson, F.

M. V. Bashevoy, F. Jonsson, K. F. Macdonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express 15(18), 11313–11320 (2007).
[CrossRef] [PubMed]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

Krasavin, A. V.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

Kuttge, M.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Lecante, J.

J. Lecante, Y. Ballu, and D. M. Newns, “Electron-surface-plasmon scattering using a parabolic nontouching trajectory,” Phys. Rev. Lett. 38(1), 36–40 (1977).
[CrossRef]

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission though subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Li, T.

D. Yang, T. Li, L. Rao, S. Xia, and L. Zhang, “Terahertz functional devices based on photonic crystal and surface plasmon polaritons,” Terahertz Science and Technology 5, 131–143 (2012).

Li, Y.

S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602 (2009).
[CrossRef] [PubMed]

Liu, S.

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[CrossRef]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[CrossRef] [PubMed]

J. Zhou, M. Hu, Y. Zhang, P. Zhang, W. Liu, and S. Liu, “Numerical analysis of electron-induced surface plasmon excitation using the FDTD method,” J. Opt. 13(3), 035003 (2011).
[CrossRef]

S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602 (2009).
[CrossRef] [PubMed]

M. Hu, Y. Zhang, Y. Yang, B. Zhong, and S. Liu, “Terahertz radiation from interaction between an electron beam and a planar surface plasmon structure,” Chin.Phys.B. 18(9), 3877–3882 (2009).
[CrossRef]

Liu, W.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[CrossRef] [PubMed]

J. Zhou, M. Hu, Y. Zhang, P. Zhang, W. Liu, and S. Liu, “Numerical analysis of electron-induced surface plasmon excitation using the FDTD method,” J. Opt. 13(3), 035003 (2011).
[CrossRef]

Macdonald, K. F.

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Newns, D. M.

J. Lecante, Y. Ballu, and D. M. Newns, “Electron-surface-plasmon scattering using a parabolic nontouching trajectory,” Phys. Rev. Lett. 38(1), 36–40 (1977).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Polman, A.

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[CrossRef] [PubMed]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Rao, L.

D. Yang, T. Li, L. Rao, S. Xia, and L. Zhang, “Terahertz functional devices based on photonic crystal and surface plasmon polaritons,” Terahertz Science and Technology 5, 131–143 (2012).

Sainidou, R.

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[CrossRef] [PubMed]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[CrossRef]

Stockman, M. I.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission though subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Vesseur, E. J. R.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Walsh, J.

J. H. Brownell, J. Walsh, and G. Doucas, “Spontaneous smith-purcell radiation described through induced surface currents,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 1075–1080 (1998).
[CrossRef]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Xia, S.

D. Yang, T. Li, L. Rao, S. Xia, and L. Zhang, “Terahertz functional devices based on photonic crystal and surface plasmon polaritons,” Terahertz Science and Technology 5, 131–143 (2012).

Xu, J.

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[CrossRef] [PubMed]

Yakovenko, V. M.

F. G. Bass and V. M. Yakovenko, “Theory of radiation from a charge passing through an electrically inhomogeneous medium,” Sov. Phys. Usp. 8(3), 420–444 (1965).
[CrossRef]

Yang, D.

D. Yang, T. Li, L. Rao, S. Xia, and L. Zhang, “Terahertz functional devices based on photonic crystal and surface plasmon polaritons,” Terahertz Science and Technology 5, 131–143 (2012).

Yang, Y.

M. Hu, Y. Zhang, Y. Yang, B. Zhong, and S. Liu, “Terahertz radiation from interaction between an electron beam and a planar surface plasmon structure,” Chin.Phys.B. 18(9), 3877–3882 (2009).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[CrossRef]

Zhang, C.

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[CrossRef]

Zhang, L.

D. Yang, T. Li, L. Rao, S. Xia, and L. Zhang, “Terahertz functional devices based on photonic crystal and surface plasmon polaritons,” Terahertz Science and Technology 5, 131–143 (2012).

Zhang, P.

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[CrossRef]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[CrossRef] [PubMed]

J. Zhou, M. Hu, Y. Zhang, P. Zhang, W. Liu, and S. Liu, “Numerical analysis of electron-induced surface plasmon excitation using the FDTD method,” J. Opt. 13(3), 035003 (2011).
[CrossRef]

Zhang, Y.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[CrossRef] [PubMed]

J. Zhou, M. Hu, Y. Zhang, P. Zhang, W. Liu, and S. Liu, “Numerical analysis of electron-induced surface plasmon excitation using the FDTD method,” J. Opt. 13(3), 035003 (2011).
[CrossRef]

S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602 (2009).
[CrossRef] [PubMed]

M. Hu, Y. Zhang, Y. Yang, B. Zhong, and S. Liu, “Terahertz radiation from interaction between an electron beam and a planar surface plasmon structure,” Chin.Phys.B. 18(9), 3877–3882 (2009).
[CrossRef]

Zhao, T.

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[CrossRef]

Zheludev, N. I.

M. V. Bashevoy, F. Jonsson, K. F. Macdonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express 15(18), 11313–11320 (2007).
[CrossRef] [PubMed]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

Zhong, B.

M. Hu, Y. Zhang, Y. Yang, B. Zhong, and S. Liu, “Terahertz radiation from interaction between an electron beam and a planar surface plasmon structure,” Chin.Phys.B. 18(9), 3877–3882 (2009).
[CrossRef]

Zhong, R.

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[CrossRef]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[CrossRef] [PubMed]

S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602 (2009).
[CrossRef] [PubMed]

Zhou, J.

J. Zhou, M. Hu, Y. Zhang, P. Zhang, W. Liu, and S. Liu, “Numerical analysis of electron-induced surface plasmon excitation using the FDTD method,” J. Opt. 13(3), 035003 (2011).
[CrossRef]

Anal. Bioanal. Chem.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

Ann. Phys.

P. Drude, “Zur elektronentheorie der metalle,” Ann. Phys. 306(3), 566–613 (1900).
[CrossRef]

Appl. Phys. Lett.

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[CrossRef]

Chin.Phys.B.

M. Hu, Y. Zhang, Y. Yang, B. Zhong, and S. Liu, “Terahertz radiation from interaction between an electron beam and a planar surface plasmon structure,” Chin.Phys.B. 18(9), 3877–3882 (2009).
[CrossRef]

J. Opt.

J. Zhou, M. Hu, Y. Zhang, P. Zhang, W. Liu, and S. Liu, “Numerical analysis of electron-induced surface plasmon excitation using the FDTD method,” J. Opt. 13(3), 035003 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[CrossRef]

Nano Lett.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[CrossRef] [PubMed]

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[CrossRef] [PubMed]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Nat. Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Rep.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Phys. Rev. B

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission though subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 036602 (2009).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

J. H. Brownell, J. Walsh, and G. Doucas, “Spontaneous smith-purcell radiation described through induced surface currents,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 1075–1080 (1998).
[CrossRef]

Phys. Rev. Lett.

J. Lecante, Y. Ballu, and D. M. Newns, “Electron-surface-plasmon scattering using a parabolic nontouching trajectory,” Phys. Rev. Lett. 38(1), 36–40 (1977).
[CrossRef]

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[CrossRef] [PubMed]

Rev. Mod. Phys.

F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[CrossRef]

Sens. Actuators B Chem.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Sov. Phys. Usp.

F. G. Bass and V. M. Yakovenko, “Theory of radiation from a charge passing through an electrically inhomogeneous medium,” Sov. Phys. Usp. 8(3), 420–444 (1965).
[CrossRef]

Terahertz Science and Technology

D. Yang, T. Li, L. Rao, S. Xia, and L. Zhang, “Terahertz functional devices based on photonic crystal and surface plasmon polaritons,” Terahertz Science and Technology 5, 131–143 (2012).

Other

D. W. Pohl, Near-field optics and the surface plasmon polariton (Springer-Verlag, Berlin Heidelberg, 2001).

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin Heidelberg, 1988).

S. Liu, Relativistic electronics (Science Press, Beijing, 1987).

V. L. Ginzburg and V. N. Tsytovich, Transition radiation and transition scattering (Adam Hilger, Bristol and New York, 1990)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, 1985).

N.W. Ashcroft and N. Mermin, Solid state physics (Thomson Learning, Toronto, Canada, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The schematic of perpendicular e-beam excitation.

Fig. 2
Fig. 2

(a) The dispersion curve of SPPs for perpendicular excitation and the inset is the frequency spectrum of SPPs. (b) The dependence of frequency and SPPs field amplitude on the beam energy and the inset is the field amplitude at fix 800 THz VS. Beam energy (β). (c) The contour map of E r1 of SPPs and TR at 800 THz in the vacuum. (d) The SPPs amplitude distribution of field E r1 at 800 THz and 750 THz along the surface for beam energy 50 keV.

Fig. 3
Fig. 3

(a) The dispersion curve of SPPs for parallel excitation. (b) The frequency spectrum of the excited SPPs for beam energy 200 keV and 50 keV. (c) The dependence of frequency and filed amplitude on the beam energy. (d) The contour map of parallel excited SPPs field in the vacuum.

Fig. 4
Fig. 4

(a) Dispersion curves of free-standing Ag film with thickness 40 nm, the blue line is for the asymmetrical mode (- mode), the green line is for the symmetrical mode ( + mode). (b) The contour maps of the two modes of the excited SPPs for β = 0.6 (130 keV). (c) The dependence of Ez field amplitude and operating frequency of excited SPPs on the beam energy. (d) The dependence of the amplitude of SPPs field on the film thickness.

Fig. 5
Fig. 5

(a) The dispersion curve for dielectric substrate supported Ag film with film thickness 40 nm, the permittivity of the substrate is 2.1, and β = 0.5 (80 keV). (b) The Ez contour maps of the two modes of the excited SPPs.

Fig. 6
Fig. 6

(a) The dependence of the SPPs field amplitude and operating frequency for substrate supported Ag film on the vacuum/Ag interface for fixed film thickness 40 nm. (b) The dependence of the SPPs field amplitude and operating frequency for substrate supported Ag film on the substrate/Ag interface for fixed film thickness 40 nm. (c) The dependence of the SPPs amplitude on film thickness on the vacuum/Ag interface for fixed β = 0.6. (d) The dependence of the SPPs amplitude on film thickness on the substrate/Ag interface for fixed β = 0.6.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E zi ( k )=j [ q( ω ε i c 2 u 0 k z ) ] / [ ε 0 ε i ( k 2 ε i ω 2 c 2 ) ] E ri ( k )= j[ q( k r ) ] / [ ε 0 ε i ( k 2 ε i ω 2 c 2 ) ]
E r1 + E r1 = E r2 + E r2 ε 1 E z1 + ε 1 E z1 = ε 2 E z2 + ε 2 E z2 k ri E ri + k zi E zi =0
E r1 ( r ,ω )= q 2π ε 0 u 0 0 + k z 1 k r 2 J 1 ( k r r) ε 2 k z 1 ε 1 k z 2 ( ( ε 2 ε 1 k z 2 u 0 ω ) ( k 2 ω 2 c 2 ε 1 ) + ( k z 2 u 0 ω 1 ) ( k 2 ω 2 c 2 ε 2 ) ) e j k z 1 z d k r
k r = k SPPs = ω c ε 1 ε 2 ε 1 + ε 2
E z i = k z q( 1 β 2 ) 2 ε 0 u 0 k c e j k z z e j k c | y y 0 | , H x i = ω ε 0 k c E z i
( E z I + E z i ) | y=0 = E z II | y=0 , ( H x I + H x i ) | y=0 = H x II | y=0
E z I ( ω )=( k z q( 1 β 2 ) e j k c y 0 2 ε 0 u 0 k c ) ( ω k c + jω ε 2 k y II ) ( jω ε 2 k y II + jω ε 1 k y I ) e j k z z e k y I y
k SPPs = ω c ε 1 ε 2 ε 1 + ε 2

Metrics