Abstract

We present a novel optical element – fiber microaxicon (FMA) for laser radiation focusing into a diffraction-limited spot with Bessel-like profile as well as for precision laser nanostructuring of metal film surfaces. Using the developed FMA for single-pulse irradiation of Au/Pd metal films on quartz substrate we have demonstrated the formation of submicron hollow microbumps with a small spike atop as well as hollow spherical nanoparticles. Experimental conditions for controllable and reproducible formation of ordered arrays of such microstructures were defined. The internal structure of the fabricated nanoparticles and nanobumps was experimentally studied using both argon ions polishing and scanning electron microscopy. These methods reveal a porous inner structure of laser-induced nanoparticles and nanobumps, which presumably indicates that a subsurface boiling of the molten metal film is a key mechanism determining the formation process of such structures.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
    [CrossRef] [PubMed]
  2. Y. Nakata, N. Miyanaga, and T. Okada, “Effect of pulse width and fluence of femtosecond laser on the size of nanobump array,” Appl. Surf. Sci. 253(15), 6555–6557 (2007).
    [CrossRef]
  3. Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
    [CrossRef]
  4. Y. Nakata, T. Okada, and M. Maeda, “Nano-sized hollow bump array generated by single femtosecond laser pulse,” Jpn. J. Appl. Phys. 42(12A), L1452–L1454 (2003).
    [CrossRef]
  5. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
    [CrossRef] [PubMed]
  6. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
    [CrossRef] [PubMed]
  7. Y. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. V. Nepomnyashchii, A. G. Savchuk, A. A. Ionin, S. I. Kudryashov, and S. V. Makarov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38(9), 1452–1454 (2013).
    [CrossRef] [PubMed]
  8. Y. Nakata, K. Tsuchida, N. Miyanaga, and H. Furusho, “Liquidly process in femtosecond laser processing,” Appl. Surf. Sci. 255(24), 9761–9763 (2009).
    [CrossRef]
  9. M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
    [CrossRef]
  10. M. Reininghaus, D. Wortmann, Z. Cao, J. M. Hoffmann, and T. Taubner, “Fabrication and spectral tuning of standing gold infrared antennas using single fs-laser pulses,” Opt. Express 21(26), 32176–32183 (2013).
    [CrossRef] [PubMed]
  11. J. P. Moening and D. G. Georgiev, “Field-emission properties of sharp high-aspect-ratio gold cones formed via single pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1013–1017 (2010).
    [CrossRef]
  12. A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov, “Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,” J. Opt. Soc. Am. B 26(12), 130–138 (2009).
    [CrossRef]
  13. G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84(12), 2025–2027 (2004).
    [CrossRef]
  14. F. Intonti, V. Emiliani, C. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Low temperature near-field luminescence studies of localized and delocalized excitons in quantum wires,” J. Microsc. 202(1), 193–201 (2001).
    [CrossRef] [PubMed]
  15. T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination-collection hybrid mode operation,” Appl. Phys. Lett. 74(19), 2773–2775 (1999).
    [CrossRef]
  16. R. Müller and C. Lienau, “Three-dimensional analysis of light propagation through uncoated near-field fibre probes,” J. Microsc. 202(2), 339–346 (2001).
    [CrossRef] [PubMed]
  17. A. A. Kuchmizhak, S. O. Gurbatov, A. Nepomniaschii, O. B. Vitrik, and Yu. N. Kulchin, “High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of Bessel-like beams,” Appl. Opt. 53(5), 937–943 (2014).
    [CrossRef] [PubMed]
  18. V. I. Emel’yanov, D. A. Zayarniy, A. A. Ionin, I. V. Kiseleva, S. I. Kudryashov, S. V. Makarov, T. H. T. Nguyen, and A. A. Rudenko, “Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation,” JETP Lett. 99(9), 518–522 (2014).
    [CrossRef]
  19. Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Nepomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, “Formation of nanobumps and nanoholes in thin metal films by sharply focused nanosecond laser pulses,” Sov. Phys. JETP 119, 15–23 (2014).
  20. M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
    [CrossRef]

2014 (4)

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[CrossRef]

A. A. Kuchmizhak, S. O. Gurbatov, A. Nepomniaschii, O. B. Vitrik, and Yu. N. Kulchin, “High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of Bessel-like beams,” Appl. Opt. 53(5), 937–943 (2014).
[CrossRef] [PubMed]

V. I. Emel’yanov, D. A. Zayarniy, A. A. Ionin, I. V. Kiseleva, S. I. Kudryashov, S. V. Makarov, T. H. T. Nguyen, and A. A. Rudenko, “Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation,” JETP Lett. 99(9), 518–522 (2014).
[CrossRef]

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Nepomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, “Formation of nanobumps and nanoholes in thin metal films by sharply focused nanosecond laser pulses,” Sov. Phys. JETP 119, 15–23 (2014).

2013 (3)

2012 (1)

2010 (2)

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

J. P. Moening and D. G. Georgiev, “Field-emission properties of sharp high-aspect-ratio gold cones formed via single pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1013–1017 (2010).
[CrossRef]

2009 (3)

A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov, “Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,” J. Opt. Soc. Am. B 26(12), 130–138 (2009).
[CrossRef]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
[CrossRef] [PubMed]

Y. Nakata, K. Tsuchida, N. Miyanaga, and H. Furusho, “Liquidly process in femtosecond laser processing,” Appl. Surf. Sci. 255(24), 9761–9763 (2009).
[CrossRef]

2007 (2)

Y. Nakata, N. Miyanaga, and T. Okada, “Effect of pulse width and fluence of femtosecond laser on the size of nanobump array,” Appl. Surf. Sci. 253(15), 6555–6557 (2007).
[CrossRef]

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
[CrossRef]

2004 (1)

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84(12), 2025–2027 (2004).
[CrossRef]

2003 (1)

Y. Nakata, T. Okada, and M. Maeda, “Nano-sized hollow bump array generated by single femtosecond laser pulse,” Jpn. J. Appl. Phys. 42(12A), L1452–L1454 (2003).
[CrossRef]

2001 (2)

F. Intonti, V. Emiliani, C. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Low temperature near-field luminescence studies of localized and delocalized excitons in quantum wires,” J. Microsc. 202(1), 193–201 (2001).
[CrossRef] [PubMed]

R. Müller and C. Lienau, “Three-dimensional analysis of light propagation through uncoated near-field fibre probes,” J. Microsc. 202(2), 339–346 (2001).
[CrossRef] [PubMed]

1999 (1)

T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination-collection hybrid mode operation,” Appl. Phys. Lett. 74(19), 2773–2775 (1999).
[CrossRef]

Bäuerle, D.

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84(12), 2025–2027 (2004).
[CrossRef]

Cao, Z.

Cheng, W.

A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov, “Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,” J. Opt. Soc. Am. B 26(12), 130–138 (2009).
[CrossRef]

Chichkov, B. N.

Cortie, M.

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
[CrossRef]

Danilov, P. A.

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Nepomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, “Formation of nanobumps and nanoholes in thin metal films by sharply focused nanosecond laser pulses,” Sov. Phys. JETP 119, 15–23 (2014).

Elsaesser, T.

F. Intonti, V. Emiliani, C. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Low temperature near-field luminescence studies of localized and delocalized excitons in quantum wires,” J. Microsc. 202(1), 193–201 (2001).
[CrossRef] [PubMed]

Emel’yanov, V. I.

V. I. Emel’yanov, D. A. Zayarniy, A. A. Ionin, I. V. Kiseleva, S. I. Kudryashov, S. V. Makarov, T. H. T. Nguyen, and A. A. Rudenko, “Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation,” JETP Lett. 99(9), 518–522 (2014).
[CrossRef]

Emiliani, V.

F. Intonti, V. Emiliani, C. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Low temperature near-field luminescence studies of localized and delocalized excitons in quantum wires,” J. Microsc. 202(1), 193–201 (2001).
[CrossRef] [PubMed]

Evlyukhin, A. B.

A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov, “Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,” J. Opt. Soc. Am. B 26(12), 130–138 (2009).
[CrossRef]

Ford, M.

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
[CrossRef]

Furusho, H.

Y. Nakata, K. Tsuchida, N. Miyanaga, and H. Furusho, “Liquidly process in femtosecond laser processing,” Appl. Surf. Sci. 255(24), 9761–9763 (2009).
[CrossRef]

Georgiev, D. G.

J. P. Moening and D. G. Georgiev, “Field-emission properties of sharp high-aspect-ratio gold cones formed via single pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1013–1017 (2010).
[CrossRef]

Gubko, M. A.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[CrossRef]

Gurbatov, S. O.

Heitz, J.

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84(12), 2025–2027 (2004).
[CrossRef]

Hiromoto, T.

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[CrossRef]

Hoffmann, J. M.

Husinsky, W.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[CrossRef]

Intonti, F.

F. Intonti, V. Emiliani, C. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Low temperature near-field luminescence studies of localized and delocalized excitons in quantum wires,” J. Microsc. 202(1), 193–201 (2001).
[CrossRef] [PubMed]

Ionin, A. A.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[CrossRef]

V. I. Emel’yanov, D. A. Zayarniy, A. A. Ionin, I. V. Kiseleva, S. I. Kudryashov, S. V. Makarov, T. H. T. Nguyen, and A. A. Rudenko, “Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation,” JETP Lett. 99(9), 518–522 (2014).
[CrossRef]

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Nepomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, “Formation of nanobumps and nanoholes in thin metal films by sharply focused nanosecond laser pulses,” Sov. Phys. JETP 119, 15–23 (2014).

Y. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. V. Nepomnyashchii, A. G. Savchuk, A. A. Ionin, S. I. Kudryashov, and S. V. Makarov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38(9), 1452–1454 (2013).
[CrossRef] [PubMed]

Kiseleva, I. V.

V. I. Emel’yanov, D. A. Zayarniy, A. A. Ionin, I. V. Kiseleva, S. I. Kudryashov, S. V. Makarov, T. H. T. Nguyen, and A. A. Rudenko, “Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation,” JETP Lett. 99(9), 518–522 (2014).
[CrossRef]

Kiyan, R.

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov, “Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,” J. Opt. Soc. Am. B 26(12), 130–138 (2009).
[CrossRef]

Koch, J.

Kuchmizhak, A. A.

Kudryashov, S. I.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[CrossRef]

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Nepomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, “Formation of nanobumps and nanoholes in thin metal films by sharply focused nanosecond laser pulses,” Sov. Phys. JETP 119, 15–23 (2014).

V. I. Emel’yanov, D. A. Zayarniy, A. A. Ionin, I. V. Kiseleva, S. I. Kudryashov, S. V. Makarov, T. H. T. Nguyen, and A. A. Rudenko, “Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation,” JETP Lett. 99(9), 518–522 (2014).
[CrossRef]

Y. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. V. Nepomnyashchii, A. G. Savchuk, A. A. Ionin, S. I. Kudryashov, and S. V. Makarov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38(9), 1452–1454 (2013).
[CrossRef] [PubMed]

Kulchin, Y. N.

Kulchin, Yu. N.

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Nepomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, “Formation of nanobumps and nanoholes in thin metal films by sharply focused nanosecond laser pulses,” Sov. Phys. JETP 119, 15–23 (2014).

A. A. Kuchmizhak, S. O. Gurbatov, A. Nepomniaschii, O. B. Vitrik, and Yu. N. Kulchin, “High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of Bessel-like beams,” Appl. Opt. 53(5), 937–943 (2014).
[CrossRef] [PubMed]

Kuznetsov, A. I.

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov, “Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,” J. Opt. Soc. Am. B 26(12), 130–138 (2009).
[CrossRef]

Lienau, C.

R. Müller and C. Lienau, “Three-dimensional analysis of light propagation through uncoated near-field fibre probes,” J. Microsc. 202(2), 339–346 (2001).
[CrossRef] [PubMed]

F. Intonti, V. Emiliani, C. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Low temperature near-field luminescence studies of localized and delocalized excitons in quantum wires,” J. Microsc. 202(1), 193–201 (2001).
[CrossRef] [PubMed]

Maeda, M.

Y. Nakata, T. Okada, and M. Maeda, “Nano-sized hollow bump array generated by single femtosecond laser pulse,” Jpn. J. Appl. Phys. 42(12A), L1452–L1454 (2003).
[CrossRef]

Makarov, S. V.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[CrossRef]

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Nepomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, “Formation of nanobumps and nanoholes in thin metal films by sharply focused nanosecond laser pulses,” Sov. Phys. JETP 119, 15–23 (2014).

V. I. Emel’yanov, D. A. Zayarniy, A. A. Ionin, I. V. Kiseleva, S. I. Kudryashov, S. V. Makarov, T. H. T. Nguyen, and A. A. Rudenko, “Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation,” JETP Lett. 99(9), 518–522 (2014).
[CrossRef]

Y. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. V. Nepomnyashchii, A. G. Savchuk, A. A. Ionin, S. I. Kudryashov, and S. V. Makarov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38(9), 1452–1454 (2013).
[CrossRef] [PubMed]

Matsuda, K.

T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination-collection hybrid mode operation,” Appl. Phys. Lett. 74(19), 2773–2775 (1999).
[CrossRef]

Miyanaga, N.

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[CrossRef]

Y. Nakata, K. Tsuchida, N. Miyanaga, and H. Furusho, “Liquidly process in femtosecond laser processing,” Appl. Surf. Sci. 255(24), 9761–9763 (2009).
[CrossRef]

Y. Nakata, N. Miyanaga, and T. Okada, “Effect of pulse width and fluence of femtosecond laser on the size of nanobump array,” Appl. Surf. Sci. 253(15), 6555–6557 (2007).
[CrossRef]

Moening, J. P.

J. P. Moening and D. G. Georgiev, “Field-emission properties of sharp high-aspect-ratio gold cones formed via single pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1013–1017 (2010).
[CrossRef]

Momoo, K.

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[CrossRef]

Müller, R.

R. Müller and C. Lienau, “Three-dimensional analysis of light propagation through uncoated near-field fibre probes,” J. Microsc. 202(2), 339–346 (2001).
[CrossRef] [PubMed]

Nakata, Y.

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[CrossRef]

Y. Nakata, K. Tsuchida, N. Miyanaga, and H. Furusho, “Liquidly process in femtosecond laser processing,” Appl. Surf. Sci. 255(24), 9761–9763 (2009).
[CrossRef]

Y. Nakata, N. Miyanaga, and T. Okada, “Effect of pulse width and fluence of femtosecond laser on the size of nanobump array,” Appl. Surf. Sci. 253(15), 6555–6557 (2007).
[CrossRef]

Y. Nakata, T. Okada, and M. Maeda, “Nano-sized hollow bump array generated by single femtosecond laser pulse,” Jpn. J. Appl. Phys. 42(12A), L1452–L1454 (2003).
[CrossRef]

Nathala, C. R.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[CrossRef]

Nepomniaschii, A.

Nepomnyashchii, A. A.

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Nepomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, “Formation of nanobumps and nanoholes in thin metal films by sharply focused nanosecond laser pulses,” Sov. Phys. JETP 119, 15–23 (2014).

Nepomnyashchii, A. V.

Nguyen, T. H. T.

V. I. Emel’yanov, D. A. Zayarniy, A. A. Ionin, I. V. Kiseleva, S. I. Kudryashov, S. V. Makarov, T. H. T. Nguyen, and A. A. Rudenko, “Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation,” JETP Lett. 99(9), 518–522 (2014).
[CrossRef]

Nötzel, R.

F. Intonti, V. Emiliani, C. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Low temperature near-field luminescence studies of localized and delocalized excitons in quantum wires,” J. Microsc. 202(1), 193–201 (2001).
[CrossRef] [PubMed]

Okada, T.

Y. Nakata, N. Miyanaga, and T. Okada, “Effect of pulse width and fluence of femtosecond laser on the size of nanobump array,” Appl. Surf. Sci. 253(15), 6555–6557 (2007).
[CrossRef]

Y. Nakata, T. Okada, and M. Maeda, “Nano-sized hollow bump array generated by single femtosecond laser pulse,” Jpn. J. Appl. Phys. 42(12A), L1452–L1454 (2003).
[CrossRef]

Overmeyer, L.

Ovsianikov, A.

A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov, “Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,” J. Opt. Soc. Am. B 26(12), 130–138 (2009).
[CrossRef]

Ploog, K. H.

F. Intonti, V. Emiliani, C. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Low temperature near-field luminescence studies of localized and delocalized excitons in quantum wires,” J. Microsc. 202(1), 193–201 (2001).
[CrossRef] [PubMed]

Reinhardt, C.

A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov, “Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,” J. Opt. Soc. Am. B 26(12), 130–138 (2009).
[CrossRef]

Reininghaus, M.

Rudenko, A. A.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[CrossRef]

V. I. Emel’yanov, D. A. Zayarniy, A. A. Ionin, I. V. Kiseleva, S. I. Kudryashov, S. V. Makarov, T. H. T. Nguyen, and A. A. Rudenko, “Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation,” JETP Lett. 99(9), 518–522 (2014).
[CrossRef]

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Nepomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, “Formation of nanobumps and nanoholes in thin metal films by sharply focused nanosecond laser pulses,” Sov. Phys. JETP 119, 15–23 (2014).

Saiki, T.

T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination-collection hybrid mode operation,” Appl. Phys. Lett. 74(19), 2773–2775 (1999).
[CrossRef]

Samokhin, A. A.

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Nepomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, “Formation of nanobumps and nanoholes in thin metal films by sharply focused nanosecond laser pulses,” Sov. Phys. JETP 119, 15–23 (2014).

Savchuk, A. G.

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Nepomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, “Formation of nanobumps and nanoholes in thin metal films by sharply focused nanosecond laser pulses,” Sov. Phys. JETP 119, 15–23 (2014).

Y. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. V. Nepomnyashchii, A. G. Savchuk, A. A. Ionin, S. I. Kudryashov, and S. V. Makarov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38(9), 1452–1454 (2013).
[CrossRef] [PubMed]

Seidel, A.

A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov, “Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,” J. Opt. Soc. Am. B 26(12), 130–138 (2009).
[CrossRef]

Seleznev, L. V.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[CrossRef]

Sinitsyn, D. V.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[CrossRef]

Taubner, T.

Treshin, I. V.

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[CrossRef]

Tsuchida, K.

Y. Nakata, K. Tsuchida, N. Miyanaga, and H. Furusho, “Liquidly process in femtosecond laser processing,” Appl. Surf. Sci. 255(24), 9761–9763 (2009).
[CrossRef]

Unger, C.

Vitrik, O. B.

Wortmann, D.

Wysocki, G.

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84(12), 2025–2027 (2004).
[CrossRef]

Yurovskikh, V. I.

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Nepomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, “Formation of nanobumps and nanoholes in thin metal films by sharply focused nanosecond laser pulses,” Sov. Phys. JETP 119, 15–23 (2014).

Zayarniy, D. A.

V. I. Emel’yanov, D. A. Zayarniy, A. A. Ionin, I. V. Kiseleva, S. I. Kudryashov, S. V. Makarov, T. H. T. Nguyen, and A. A. Rudenko, “Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation,” JETP Lett. 99(9), 518–522 (2014).
[CrossRef]

Zayarnyi, D. A.

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Nepomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, “Formation of nanobumps and nanoholes in thin metal films by sharply focused nanosecond laser pulses,” Sov. Phys. JETP 119, 15–23 (2014).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84(12), 2025–2027 (2004).
[CrossRef]

T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination-collection hybrid mode operation,” Appl. Phys. Lett. 74(19), 2773–2775 (1999).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. P. Moening and D. G. Georgiev, “Field-emission properties of sharp high-aspect-ratio gold cones formed via single pulse laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1013–1017 (2010).
[CrossRef]

Appl. Surf. Sci. (3)

Y. Nakata, K. Tsuchida, N. Miyanaga, and H. Furusho, “Liquidly process in femtosecond laser processing,” Appl. Surf. Sci. 255(24), 9761–9763 (2009).
[CrossRef]

Y. Nakata, N. Miyanaga, and T. Okada, “Effect of pulse width and fluence of femtosecond laser on the size of nanobump array,” Appl. Surf. Sci. 253(15), 6555–6557 (2007).
[CrossRef]

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[CrossRef]

J. Microsc. (2)

R. Müller and C. Lienau, “Three-dimensional analysis of light propagation through uncoated near-field fibre probes,” J. Microsc. 202(2), 339–346 (2001).
[CrossRef] [PubMed]

F. Intonti, V. Emiliani, C. Lienau, T. Elsaesser, R. Nötzel, and K. H. Ploog, “Low temperature near-field luminescence studies of localized and delocalized excitons in quantum wires,” J. Microsc. 202(1), 193–201 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov, “Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,” J. Opt. Soc. Am. B 26(12), 130–138 (2009).
[CrossRef]

JETP Lett. (1)

V. I. Emel’yanov, D. A. Zayarniy, A. A. Ionin, I. V. Kiseleva, S. I. Kudryashov, S. V. Makarov, T. H. T. Nguyen, and A. A. Rudenko, “Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation,” JETP Lett. 99(9), 518–522 (2014).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Nakata, T. Okada, and M. Maeda, “Nano-sized hollow bump array generated by single femtosecond laser pulse,” Jpn. J. Appl. Phys. 42(12A), L1452–L1454 (2003).
[CrossRef]

Laser Phys. Lett. (1)

M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, “Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse,” Laser Phys. Lett. 11(6), 065301 (2014).
[CrossRef]

Nanotechnology (1)

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Sov. Phys. JETP (1)

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Nepomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, “Formation of nanobumps and nanoholes in thin metal films by sharply focused nanosecond laser pulses,” Sov. Phys. JETP 119, 15–23 (2014).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup; (b) SEM image of the fiber microaxicon with the full cone angle θ≈90° and the cone base diameter D = 2 μm used for laser nanostructuring experiments; (c) Typical laser intensity distribution measured at the FMA focus plane using the aperture-type collection-mode SNOM.

Fig. 2
Fig. 2

Main types of laser-induced microstructures fabricated on the 40-nm thick Au/Pd film irradiated by single nanosecond pulses with the pulse energy E = 1 nJ (a), 2.1 nJ (b), 2.3 nJ (c), 3.8 nJ (d). The inset of Fig. 2(a) shows AFM image of one of the microbumps. The inset of Fig. 2(d) shows a porous spherical nanoparticle in an enlarged view.

Fig. 3
Fig. 3

Main types of laser-induced microstructures fabricated on the 160-nm thick Au/Pd film irradiated by single nanosecond pulses with the pulse energy E = 3.7 nJ (a), 4.2 nJ (b), 5.1 nJ (c), 5.7 nJ (d).

Fig. 4
Fig. 4

SEM images of the laser-induced microstructures fabricated in the 160-nm thick Au/Pd film before (top row) and after (bottom row) polishing by accelerated argon ions during 5 min at a polishing rate ~0.33 nm/sec revealing the internal porous structure of the spherical nanoparticles and microbumps.

Fig. 5
Fig. 5

(a) Diameter and height of laser-induced microstructures versus pulse energy measured for Au/Pd film thicknesses 40, 80 and 160 nm (hollow circle curves correspond to the inner through nanoholes diameters). SEM images in the insets illustrate the main types of the laser-induced microstructures.; (b) SEM image of “IACP” letters consisting of microbumps on the 80-nm thick Au/Pd film surface (each microstructure fabricated by a single-pulse irradiation at E = 3.2 nJ); (c) SEM images of the single microstructure – 100-nm wide through-hole formed in the FMA apex coated with the 80-nm thick Au/Pd film.

Metrics