Abstract

Guiding light inside the hollow cores of microstructured optical fibers is a major research field within fiber optics. However, most of current fibers reveal limited spectral operation ranges between the mid-visible and the infrared and rely on complicated microstructures. Here we report on a new type of hollow-core fiber, showing for the first time distinct transmission windows between the deep ultraviolet and the near infrared. The fiber, guiding in a single mode, operates by the central core mode being anti-resonant to adjacent modes, leading to a novel modified tunneling leaky mode. The fiber design is straightforward to implement and reveals beneficial features such as preselecting the lowest loss mode (Gaussian-like or donut-shaped mode). Fibers with such a unique combination of attributes allow accessing the extremely important deep-UV range with Gaussian-like mode quality and may pave the way for new discoveries in biophotonics, multispectral spectroscopy, photo-initiated chemistry or ultrashort pulse delivery.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett. 29(11), 1285–1287 (2004).
    [CrossRef] [PubMed]
  2. K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. J. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett. 38(18), 3592–3595 (2013).
    [CrossRef] [PubMed]
  3. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
    [CrossRef] [PubMed]
  4. T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
    [CrossRef] [PubMed]
  5. S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
    [CrossRef] [PubMed]
  6. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [CrossRef] [PubMed]
  7. Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
    [CrossRef] [PubMed]
  8. T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
    [CrossRef] [PubMed]
  9. V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995).
    [CrossRef] [PubMed]
  10. T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B 111(16), 4171–4177 (2007).
    [CrossRef] [PubMed]
  11. T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
    [CrossRef] [PubMed]
  12. P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012).
    [CrossRef] [PubMed]
  13. J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
    [CrossRef] [PubMed]
  14. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
    [CrossRef] [PubMed]
  15. A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Opt. Lett. 36(24), 4776–4778 (2011).
    [CrossRef] [PubMed]
  16. G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4(6), 1840–1855 (2012).
    [CrossRef] [PubMed]
  17. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
    [CrossRef] [PubMed]
  18. T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009).
    [CrossRef] [PubMed]
  19. T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct. 924–926, 301–308 (2009).
    [CrossRef]
  20. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission + Lasers,” Bell System Technical Journal 43, 1783 (1964).
  21. Y. Fink, D. J. Ripin, S. H. Fan, C. P. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999).
    [CrossRef]
  22. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
    [CrossRef] [PubMed]
  23. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004).
    [CrossRef] [PubMed]
  24. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282(5393), 1476–1478 (1998).
    [CrossRef] [PubMed]
  25. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [CrossRef] [PubMed]
  26. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  27. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  28. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
    [CrossRef] [PubMed]
  29. M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. S. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013).
    [CrossRef] [PubMed]
  30. O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
    [CrossRef] [PubMed]
  31. F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today 171(1), 281–289 (2011).
    [CrossRef]
  32. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [CrossRef]
  33. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [CrossRef] [PubMed]
  34. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
    [CrossRef] [PubMed]
  35. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [CrossRef] [PubMed]
  36. S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J.-L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett. 34(19), 2888–2890 (2009).
    [CrossRef] [PubMed]
  37. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
    [CrossRef] [PubMed]
  38. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13(20), 8277–8285 (2005).
    [CrossRef] [PubMed]
  39. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [CrossRef] [PubMed]
  40. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [CrossRef] [PubMed]
  41. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
    [CrossRef] [PubMed]
  42. K. J. Rowland, S. Afshar V, and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16(22), 17935–17951 (2008).
    [CrossRef] [PubMed]
  43. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [CrossRef] [PubMed]
  44. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
    [CrossRef] [PubMed]
  45. L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012).
    [CrossRef] [PubMed]
  46. P. Yeh, A. Yariv, and E. Marom, “THEORY OF BRAGG FIBER,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978).
    [CrossRef]
  47. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  48. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [CrossRef] [PubMed]
  49. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
    [CrossRef] [PubMed]
  50. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [CrossRef] [PubMed]
  51. E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
    [CrossRef] [PubMed]
  52. F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010).
    [CrossRef] [PubMed]
  53. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: Capillary drawing,” J. Lightwave Technol. 19(12), 1924–1931 (2001).
    [CrossRef]

2014 (1)

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[CrossRef] [PubMed]

2013 (7)

K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. J. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett. 38(18), 3592–3595 (2013).
[CrossRef] [PubMed]

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
[CrossRef] [PubMed]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. S. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013).
[CrossRef] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[CrossRef] [PubMed]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
[CrossRef] [PubMed]

2012 (6)

2011 (4)

2010 (4)

2009 (3)

S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J.-L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett. 34(19), 2888–2890 (2009).
[CrossRef] [PubMed]

T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009).
[CrossRef] [PubMed]

T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct. 924–926, 301–308 (2009).
[CrossRef]

2008 (2)

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

K. J. Rowland, S. Afshar V, and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16(22), 17935–17951 (2008).
[CrossRef] [PubMed]

2007 (4)

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B 111(16), 4171–4177 (2007).
[CrossRef] [PubMed]

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

2004 (2)

2003 (5)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

2000 (1)

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

1999 (2)

Y. Fink, D. J. Ripin, S. H. Fan, C. P. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

1995 (1)

V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995).
[CrossRef] [PubMed]

1984 (1)

1978 (1)

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission + Lasers,” Bell System Technical Journal 43, 1783 (1964).

Abdolvand, A.

Abeeluck, A. K.

Afshar V, S.

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Anstie, J. D.

Auguste, J.-L.

Babic, F.

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Balakrishnan, G.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Bayindir, M.

Baynes, F. N.

Beaudou, B.

Becker, K.

T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009).
[CrossRef] [PubMed]

Benabid, F.

Benoit, G.

Biriukov, A. S.

Birks, T. A.

Blondy, J.-M.

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Bringmann, G.

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Burger, S.

Chang, H.-C.

Chen, C. P.

Chen, J. S. Y.

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
[CrossRef] [PubMed]

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Cubillas, A. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Dasari, R. R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Davis, A. V.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

de Sterke, C. M.

Dianov, E. M.

Dunn, S. C.

Eggleton, B. J.

Engeness, T. D.

Etzold, B. J. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Euser, T. G.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[CrossRef] [PubMed]

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
[CrossRef] [PubMed]

Fan, S. H.

Farr, L.

Farrer, N. J.

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
[CrossRef] [PubMed]

Feld, M. S.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Février, S.

Fink, Y.

Fitt, A. D.

Fitzmaurice, M.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Fleming, J. W.

Focia, P.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Fokoua, E. N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[CrossRef] [PubMed]

Frosch, T.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[CrossRef] [PubMed]

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
[CrossRef] [PubMed]

T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009).
[CrossRef] [PubMed]

T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct. 924–926, 301–308 (2009).
[CrossRef]

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B 111(16), 4171–4177 (2007).
[CrossRef] [PubMed]

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

Frosz, M.

Frosz, M. H.

Furusawa, K.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Garbos, M. K.

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[CrossRef] [PubMed]

Garcia-Garcia, F. R.

F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today 171(1), 281–289 (2011).
[CrossRef]

Gérôme, F.

Ghenuche, P.

Göbel, W.

Gonzalez-Jimenez, I. D.

F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today 171(1), 281–289 (2011).
[CrossRef]

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Hand, D. P.

Hanf, S.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[CrossRef] [PubMed]

Hanlon, E. B.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Hart, S. D.

Hayes, J. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Headley, C.

Helmchen, F.

Humbert, G.

Ibanescu, M.

Itzkan, I.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Jacobs, S. A.

Jamier, R.

Jayaraman, V.

V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Joly, N. Y.

Jones, A. C.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Keiner, R.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[CrossRef] [PubMed]

Knight, J. C.

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
[CrossRef] [PubMed]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[CrossRef] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[CrossRef] [PubMed]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13(20), 8277–8285 (2005).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Koncarevic, S.

T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009).
[CrossRef] [PubMed]

Koo, T. W.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Kosolapov, A. F.

Kramer, J. R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Kuriki, K.

Kuriki, Y.

Labruyère, A.

Lai, C.-H.

Langenhorst, F.

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

Leggett, G. J.

G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4(6), 1840–1855 (2012).
[CrossRef] [PubMed]

Li, K.

F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today 171(1), 281–289 (2011).
[CrossRef]

Li, Z.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Light, P. S.

Litchinitser, N. M.

Liu, T.-A.

Lu, J.-Y.

Luiten, A. N.

Lurie, A.

Maier, R. R. J.

Mak, K. F.

Mangan, B. J.

Manoharan, R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission + Lasers,” Bell System Technical Journal 43, 1783 (1964).

Marom, E.

Mason, M. W.

McPhedran, R. C.

Monro, T. M.

Motz, J. T.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Mukerji, I.

V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995).
[CrossRef] [PubMed]

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Nimmerjahn, A.

Nold, J.

Noll, T.

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

O’Halloran, T. V.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Pearce, G. J.

Peng, J.-L.

Penner-Hahn, J. E.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Petrovich, M. N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Please, C. P.

Plotnichenko, V. G.

Poletti, F.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[CrossRef] [PubMed]

Popp, J.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[CrossRef] [PubMed]

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
[CrossRef] [PubMed]

T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct. 924–926, 301–308 (2009).
[CrossRef]

T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009).
[CrossRef] [PubMed]

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B 111(16), 4171–4177 (2007).
[CrossRef] [PubMed]

Poulton, C. G.

Pryamikov, A. D.

Rahman, M. A.

F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today 171(1), 281–289 (2011).
[CrossRef]

Rammler, S.

Richardson, D. J.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[CrossRef] [PubMed]

Rigneault, H.

Ripin, D. J.

Roberts, P. J.

Rodgers, K. R.

V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995).
[CrossRef] [PubMed]

Rowland, K. J.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Russell, P. S.

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. S. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013).
[CrossRef] [PubMed]

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. S. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. J. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett. 38(18), 3592–3595 (2013).
[CrossRef] [PubMed]

P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012).
[CrossRef] [PubMed]

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[CrossRef] [PubMed]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13(20), 8277–8285 (2005).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Sabert, H.

Sadler, P. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
[CrossRef] [PubMed]

Scharrer, M.

P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012).
[CrossRef] [PubMed]

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
[CrossRef] [PubMed]

Schenzel, K.

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission + Lasers,” Bell System Technical Journal 43, 1783 (1964).

Schmidt, O. A.

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[CrossRef] [PubMed]

Schmitt, M.

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B 111(16), 4171–4177 (2007).
[CrossRef] [PubMed]

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

Semjonov, S. L.

Setti, V.

Shafer, K. E.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Shapira, O.

Shephard, J. D.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Skorobogatiy, M.

Slavik, R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Soljacic, M.

Spiro, T. G.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995).
[CrossRef] [PubMed]

St J Russell, P.

Stace, T. M.

Staehlin, B. M.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Stasser, J. P.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Stefani, A.

Sun, C.-K.

Tarcea, N.

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

Thiele, H.

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

Thomas, E. L.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Tomlinson, A.

Travers, J. C.

Unterkofler, S.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Urich, A.

Usner, B.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Viens, J. F.

Vincetti, L.

Wadsworth, W. J.

Wang, Y. Y.

Wasserscheid, P.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Weisberg, O.

Weiss, T.

Wenger, J.

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Wheeler, N. V.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[CrossRef] [PubMed]

White, T. P.

Wiederhecker, G. S.

Williams, D. P.

Xue, Y.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Yan, D.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[CrossRef] [PubMed]

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
[CrossRef] [PubMed]

Yariv, A.

Yeh, P.

You, B.

Yu, F.

Anal. Chem. (4)

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013).
[CrossRef] [PubMed]

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014).
[CrossRef] [PubMed]

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007).
[CrossRef] [PubMed]

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Bell System Technical Journal (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission + Lasers,” Bell System Technical Journal 43, 1783 (1964).

Biomed. Opt. Express (1)

Catal. Today (1)

F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today 171(1), 281–289 (2011).
[CrossRef]

Chem. Soc. Rev. (1)

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Chemistry (1)

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010).
[CrossRef] [PubMed]

J. Lightwave Technol. (2)

J. Mol. Struct. (1)

T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct. 924–926, 301–308 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B 111(16), 4171–4177 (2007).
[CrossRef] [PubMed]

Nanoscale (1)

G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4(6), 1840–1855 (2012).
[CrossRef] [PubMed]

Nat. Chem. Biol. (1)

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Nature (2)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Opt. Express (14)

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
[CrossRef] [PubMed]

K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004).
[CrossRef] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
[CrossRef] [PubMed]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[CrossRef] [PubMed]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13(20), 8277–8285 (2005).
[CrossRef] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[CrossRef] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[CrossRef] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
[CrossRef] [PubMed]

K. J. Rowland, S. Afshar V, and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16(22), 17935–17951 (2008).
[CrossRef] [PubMed]

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[CrossRef] [PubMed]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[CrossRef] [PubMed]

L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012).
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[CrossRef] [PubMed]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[CrossRef] [PubMed]

Opt. Lett. (10)

F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010).
[CrossRef] [PubMed]

W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett. 29(11), 1285–1287 (2004).
[CrossRef] [PubMed]

K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. J. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett. 38(18), 3592–3595 (2013).
[CrossRef] [PubMed]

A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Opt. Lett. 36(24), 4776–4778 (2011).
[CrossRef] [PubMed]

P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012).
[CrossRef] [PubMed]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[CrossRef] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[CrossRef] [PubMed]

S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J.-L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett. 34(19), 2888–2890 (2009).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. S. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[CrossRef] [PubMed]

Science (5)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995).
[CrossRef] [PubMed]

Other (1)

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The double antiresonant hollow square core fiber. (a) Scanning electron micrograph image of the cross section of the fiber (dark: air, light grey: silica). (b) Far field image of the transmitted mode at a wavelength of 355 nm. (c) Experimentally measured modal attenuation of the fundamental mode as function of wavelength (blue). The spectral positions of the silica strand resonances (calculated via the equation given in the text) are indicated by the dashed light grey lines (numbers correspond to the respective resonance order). The light purple areas show the different ultraviolet regimes (UVA 380–315 nm; UVB: 315–280 nm; UVC (deep UV): 280–200 nm) and the yellow and white areas the visible and near infrared intervals. The cyan dot refers to the wavelength at which the far field image shown in b) was taken. (d) Simulated modal attenuation of the fundamental mode using two different quasi-analytic models. Blue dots show the experimental loss minima. (e) ring model (green lines in c), (f) extended ring model (purple lines in d). White is air, cyan is silica. The dashed lines indicate extending the respective layer to infinity.

Fig. 2
Fig. 2

Properties of the modified tunneling leaky modes of the hollow square core fiber (simulated by ring model Fig. 1(e)). (a) Example illustrating the radial Pointing vector distribution (logarithmic scale) of the modified tunneling leaky mode (radiation caustic indicated by the blue dot at 32.5 µm, a = 8.85 µm, t = 560 nm). (b) Spectral distribution of the radiation caustic for the different transmission bands (grey dashed lines: spectral positions of the strand resonances with the respective resonance orders). The lower black dashed line is the boundary at which the tunneling converts to a refracting leaky mode, and the upper black dashed line is the limit of an infinite distance from the core, corresponding to the bounded mode boundary. The region of the tunneling leaky modes is shown in light green.

Fig. 3
Fig. 3

Modal attenuation of the two lowest order modified tunneling leaky modes as function of the outer waveguide radius b (Fig. 1(f), a = 10 µm, t = 500 nm, λ0 = 500 nm). The fundamental mode (TL-HE11) and the next higher-order mode (TL-TE01) are shown in purple and blue, respectively. The two dashed horizontal lines indicate the attenuation of the corresponding modes from the ring model (Fig. 1(e)). The normalized Poynting vector distributions of two TL-HE11 modes with selected cladding radii are presented on the right-handed side of the diagram (linear scale). (b): minimum attenuation at a radius of 17 µm (green square), (c) maximum attenuation at a radius of 23 µm (red dot). The color bar on the top of the figure refers to the two Poynting vector distributions.

Fig. 4
Fig. 4

Spectral characteristics of the two lowest order modified tunneling leaky modes (calculated by the extended ring model). (a) The diagram shows the modal attenuation as function of frequency of the fundamental mode (TL-HE11 mode, purple) and the next higher order mode (TL-TE01 mode, blue). The two images on the right-handed side show experimentally measured near field images of the central core modes for two different fiber structures.

Fig. 5
Fig. 5

Fabrication details of the square core fiber. (a) Fabrication sequence of the three step process. The numbers along the magenta arrows indicate the approximate size reduction factor. (b) Microscope image of the cane. (c) Scanning electron micrograph of the square core fiber cross section.

Metrics