Abstract

A PLC-based LP11 mode rotator is proposed. The proposed mode rotator is composed of a waveguide with a trench that provides asymmetry of the waveguide. Numerical simulations show that converting LP11a (LP11b) mode to LP11b (LP11a) mode can be achieved with high conversion efficiency (more than 90%) and little polarization dependence over a wide wavelength range from 1450 nm to 1650 nm. In addition, we fabricate the proposed LP11 mode rotator using silica-based PLC. It is confirmed that the fabricated mode rotator can convert LP11a mode to LP11b mode over a wide wavelength range.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of optical fiber-based LP01 ↔ LP02 mode converters for the O-, S-, and C-Band

Hakim Mellah, Xiupu Zhang, and Dongya Shen
Appl. Opt. 54(17) 5568-5575 (2015)

Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide

Aitor V. Velasco, María L. Calvo, Pavel Cheben, Alejandro Ortega-Moñux, Jens H. Schmid, Carlos Alonso Ramos, Íñigo Molina Fernandez, Jean Lapointe, Martin Vachon, Siegfried Janz, and Dan-Xia Xu
Opt. Lett. 37(3) 365-367 (2012)

Broadband and fabrication-tolerant on-chip scalable mode-division multiplexing based on mode-evolution counter-tapered couplers

Jing Wang, Yi Xuan, Minghao Qi, Haiyang Huang, You Li, Ming Li, Xin Chen, Zhen Sheng, Aimin Wu, Wei Li, Xi Wang, Shichang Zou, and Fuwan Gan
Opt. Lett. 40(9) 1956-1959 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Ip, N. Bai, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, Y. Luo, G. D. Peng, G. Li, and T. Wang, “6 × 6 MIMO transmission over 50+25+10 km heterogeneous spans of few-mode fiber with inline erbium-doped fiber amplifier,” in Optical Fiber Communication Conference/National Fiber Engineers Conference 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper OTu2C.4. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6192056
  2. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
    [Crossref]
  3. M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. B. Astruc, L. Provost, and G. Charlet, “Mode-division multiplexing of 2 × 100 Gb/s channels using an LCOS-based spatial modulator,” J. Lightwave Technol. 30(4), 618–623 (2012).
  4. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Mode-division multiplexed transmission with fiber mode couplers,” in Optical Fiber Communication Conference/National Fiber Engineers Conference 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper OW1D.4.
    [Crossref]
  5. A. Li, J. Ye, X. Chen, and W. Shieh, “Low-loss fused mode coupler for few-mode transmission,” in Optical Fiber Communication Conference/National Fiber Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3G.4.
    [Crossref]
  6. S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22(1), 1036–1044 (2014).
    [Crossref] [PubMed]
  7. S. Yerolatsitis, I. Gris-Sánchez, and T. A. Birks, “Adiabatically-tapered fiber mode multiplexers,” Opt. Express 22(1), 608–617 (2014).
    [Crossref] [PubMed]
  8. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission,” Opt. Express 21(22), 25752–25760 (2013).
    [Crossref] [PubMed]
  9. T. Uematsu, K. Saitoh, N. Hanzawa, T. Sakamoto, T. Matsui, K. Tsujikawa, and M. Koshiba, “Low-loss and broadband PLC-type mode (de)multiplexer for mode-division multiplexing transmission,” in Optical Fiber Communication Conference/National Fiber Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh1B.5.
    [Crossref]
  10. N. Hanzawa, K. Saitoh, T. Sakamoto, K. Tsujikawa, T. Uematsu, M. Koshiba, and F. Yamamoto, “Three-mode PLC-type multi/demultiplexer for mode-division multiplexing transmission,” in European Conference and Exhibition on Optical Communication 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper Tu.1.B.3. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6647527
  11. T. Uematsu, N. Hanzawa, K. Saitoh, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-type LP11 mode rotator with single-trench waveguide for mode-division multiplexing transmission,” in Optical Fiber Communication Conference/National Fiber Engineers Conference 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.52.
    [Crossref]
  12. K. Saitoh and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19(3), 405–413 (2001).
    [Crossref]

2014 (2)

2013 (1)

2012 (2)

2001 (1)

Astruc, M. B.

Bigo, S.

Birks, T. A.

Bland-Hawthorn, J.

Bolle, C.

Boutin, A.

Brindel, P.

Burrows, E. C.

Charlet, G.

Ercan, B.

Esmaeelpour, M.

Essiambre, R.-J.

Fontaine, N. K.

Gnauck, A. H.

Gris-Sánchez, I.

Hanzawa, N.

Koebele, C.

Koshiba, M.

Leon-Saval, S. G.

Lingle, R.

Mardoyan, H.

Matsui, T.

McCurdy, A. H.

Mumtaz, S.

Peckham, D. W.

Provost, L.

Randel, S.

Ryf, R.

Saitoh, K.

Sakamoto, T.

Salazar-Gil, J. R.

Salsi, M.

Sierra, A.

Sillard, P.

Sperti, D.

Tran, P.

Tsujikawa, K.

Verluise, F.

Winzer, P. J.

Yamamoto, F.

Yerolatsitis, S.

J. Lightwave Technol. (3)

Opt. Express (3)

Other (6)

T. Uematsu, K. Saitoh, N. Hanzawa, T. Sakamoto, T. Matsui, K. Tsujikawa, and M. Koshiba, “Low-loss and broadband PLC-type mode (de)multiplexer for mode-division multiplexing transmission,” in Optical Fiber Communication Conference/National Fiber Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh1B.5.
[Crossref]

N. Hanzawa, K. Saitoh, T. Sakamoto, K. Tsujikawa, T. Uematsu, M. Koshiba, and F. Yamamoto, “Three-mode PLC-type multi/demultiplexer for mode-division multiplexing transmission,” in European Conference and Exhibition on Optical Communication 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper Tu.1.B.3. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6647527

T. Uematsu, N. Hanzawa, K. Saitoh, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-type LP11 mode rotator with single-trench waveguide for mode-division multiplexing transmission,” in Optical Fiber Communication Conference/National Fiber Engineers Conference 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.52.
[Crossref]

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Mode-division multiplexed transmission with fiber mode couplers,” in Optical Fiber Communication Conference/National Fiber Engineers Conference 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper OW1D.4.
[Crossref]

A. Li, J. Ye, X. Chen, and W. Shieh, “Low-loss fused mode coupler for few-mode transmission,” in Optical Fiber Communication Conference/National Fiber Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3G.4.
[Crossref]

E. Ip, N. Bai, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, Y. Luo, G. D. Peng, G. Li, and T. Wang, “6 × 6 MIMO transmission over 50+25+10 km heterogeneous spans of few-mode fiber with inline erbium-doped fiber amplifier,” in Optical Fiber Communication Conference/National Fiber Engineers Conference 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper OTu2C.4. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6192056

Supplementary Material (1)

» Media 1: MP4 (1531 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Structure of a PLC-based LP11 mode rotator with a trench. Inset images show field distributions of LP11a and LP11b modes.

Fig. 2
Fig. 2

Field distributions of two orthogonal LP11 modes whose optical axes are rotated with respect to the x- and y-axes in the waveguide with the trench; (a) 1st LP11 mode, (b) 2nd LP11 mode.

Fig. 3
Fig. 3

(a) Trench depth d, (b) trench position t, and (c) trench width s dependence of normalized overlap integral of 1st and 2nd LP11 modes shown in Fig. 2 with LP11a mode at a wavelength of 1550 nm.

Fig. 4
Fig. 4

Conversion efficiency as a function of the trench waveguide length for x- and y- polarization when (a) LP11a mode or (b) LP11b mode is input at a wavelength of 1550 nm. Inset images show field distributions of LP11 mode in the LP11 mode rotator. Red and blue solid lines show the results for x-polarization. Green and cyan dashed lines show the results for y-polarization. Two lines almost overlap each other owing to little polarization dependence. See Media 1.

Fig. 5
Fig. 5

Wavelength dependence of the LP11 mode rotator when (a) LP11a mode or (b) LP11b mode is input.

Fig. 6
Fig. 6

Fabrication tolerance to (a) trench position t, (b) trench depth d, (c) trench width s when LP11a mode is input at a wavelength of 1550 nm.

Fig. 7
Fig. 7

Wavelength dependence of the normalized output power of LP01, LP11a, and LP11b modes for the case of the design parameters shown in Table 1 (t = 2.0 μm, d = 5.4 μm, and L = 1.46 mm) when (a) LP01 mode, (b) LP11a mode, or (c) LP11b mode is launched.

Fig. 8
Fig. 8

Wavelength dependence of the normalized output power for the case of t = 1.0 μm, d = 4.3 μm, and L = 1.92 mm (the other parameters are not changed) when (a) LP01 mode, (b) LP11a mode, or (c) LP11b mode is launched.

Fig. 9
Fig. 9

Wavelength dependence of the normalized output power for the case of t = 0 μm, d = 3.9 μm, and L = 2.99 mm (the other parameters are not changed) when (a) LP01 mode, (b) LP11a mode, or (c) LP11b mode is launched.

Fig. 10
Fig. 10

Fabricated LP11 mode rotator with silica-based PLC. All components are fabricated on a chip. Upper and lower waveguides do not have and have the trench, respectively.

Fig. 11
Fig. 11

Experimental setup for the LP11 mode rotator. PLC-based mode multiplexers are used for excitation of LP11a mode.

Fig. 12
Fig. 12

Schematic drawing of PLC-based three-mode multiplexer that can multiplex and demultiplex LP01, LP11a, LP11b modes. The three-mode multiplexer consists of two PLC-based two-mode multiplexers and the proposed LP11 mode rotator. Two-mode multiplexers are used for excitation of LP11a mode.

Tables (2)

Tables Icon

Table 1 Design Parameters of the Proposed LP11 Mode Rotator.

Tables Icon

Table 2 Near Field Patterns of Output Light Through the Fabricated Waveguide with (Left) or without (Right) a Trench when LP11a Mode is Input at Each Wavelength

Metrics