Abstract

The effect of the presence of substrates below metal grids on light transmission is investigated through finite-different time-domain (FDTD) simulations. Comparing grids on substrates with suspended grids, we identify the effects of the presence of substrates on the transmittances of metal grids. The presence of substrates below micron-scale grids has no specific effect on their transmittances; however, unexpected dips and flattened peaks in transmission spectra were observed in nano-scale grids. The figures of merits (FoMs) of metal grids are calculated using estimated transmittances and grid sheet resistances. Due to their lower resistances and higher transmittances, micron-scale grids show higher FoMs than nano-scale grids and, are thus promising transparent conducting electrode candidates. The best 1D grid electrode in this work exhibited a figure of merit, σdc/σop, > 1000

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
    [CrossRef] [PubMed]
  2. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
    [CrossRef]
  3. J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
    [CrossRef] [PubMed]
  4. Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1-2), 201–205 (2001).
    [CrossRef]
  5. H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 86, 183503 (2005).
  6. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
    [CrossRef] [PubMed]
  7. J. Huang, P. Miller, J. Wilson, A. Mello, J. Mello, and D. Bradley, “Investigation of the effects of doping and postdeposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films,” Adv. Funct. Mater. 15(2), 290–296 (2005).
    [CrossRef]
  8. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
    [CrossRef] [PubMed]
  9. D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
    [CrossRef] [PubMed]
  10. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
    [CrossRef] [PubMed]
  11. P. Santhosh and K. Dong-Won, “Preparation and characterization of highly conductive transparent films with single-walled carbon nanotubes for flexible display applications,” Carbon 47, 2436–2441 (2009).
  12. M. C. Rosamond, A. J. Gallant, J. J. Atherton, M. C. Petty, O. Kolosov, and D. A. Zeze, “Transparent gold nanowire electrodes,” in the 11th IEEE Conference on Nanotechnology (IEEE-NANO, 2011), pp. 604–607.
  13. P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater. 24(25), 3326–3332 (2012).
    [CrossRef] [PubMed]
  14. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
    [CrossRef] [PubMed]
  15. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 3(7), 1767–1774 (2009).
    [CrossRef] [PubMed]
  16. T. Gao and P. W. Leu, “The role of propagating modes in silver nanowire arrays for transparent electrodes,” Opt. Express 21(S3Suppl 3), A419–A429 (2013).
    [CrossRef] [PubMed]
  17. A. J. Jin and K. Han-Ki, “Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1801–1809 (2009).
  18. M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013).
    [CrossRef] [PubMed]
  19. F. Solutions, “Lumerical Solutions Inc,” Vancouver, British Columbia, Canada (Accessed January 2013), http://www.lumerical.com/tcad-products/fdtd (2003).
  20. W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics 2012–2013 (CRC Press, 2012).
  21. K. Lee, S. H. Song, and J. Ahn, “FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes,” Opt. Express 22(6), 6269–6275 (2014).
    [CrossRef] [PubMed]
  22. L. Rayleigh, “III.Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philosophical Magazine Series 6 14(79), 60–65 (1907).
    [CrossRef]
  23. D. Maystre, “Theory of Wood’s Anomalies,” in Plasmonics, S. Enoch, and N. Bonod, eds. (Springer, 2012), pp. 39–83.
  24. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
    [CrossRef] [PubMed]
  25. B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci Rep 3, 2840 (2013).
    [CrossRef] [PubMed]
  26. K. Fuchs and N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Camb. Philos. Soc. 34(01), 100–108 (1938).
    [CrossRef]
  27. E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952).
    [CrossRef]
  28. S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, and S. O. Kim, “Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement,” Nano Lett. 9(6), 2300–2305 (2009).
    [CrossRef] [PubMed]
  29. D. Josell, S. H. Brongersma, and Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009).
    [CrossRef]
  30. R. B. Dingle, “The Electrical Conductivity of Thin Wires,” Proc. R. Soc. Lond. A Math. Phys. Sci. 201(1067), 545–560 (1950).
    [CrossRef]
  31. N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Saunders College, 1976).
  32. W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
    [CrossRef]
  33. L. Hu, D. S. Hecht, and G. Grüner, “Percolation in transparent and conducting carbon nanotube networks,” Nano Lett. 4(12), 2513–2517 (2004).
    [CrossRef]
  34. T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
    [CrossRef]
  35. S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4(12), 7064–7072 (2010).
    [CrossRef] [PubMed]
  36. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [CrossRef]

2014

2013

M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013).
[CrossRef] [PubMed]

T. Gao and P. W. Leu, “The role of propagating modes in silver nanowire arrays for transparent electrodes,” Opt. Express 21(S3Suppl 3), A419–A429 (2013).
[CrossRef] [PubMed]

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci Rep 3, 2840 (2013).
[CrossRef] [PubMed]

2012

P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater. 24(25), 3326–3332 (2012).
[CrossRef] [PubMed]

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[CrossRef]

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[CrossRef]

2011

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

2010

P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[CrossRef] [PubMed]

S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4(12), 7064–7072 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

2009

A. J. Jin and K. Han-Ki, “Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1801–1809 (2009).

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[CrossRef] [PubMed]

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, and S. O. Kim, “Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

D. Josell, S. H. Brongersma, and Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009).
[CrossRef]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

P. Santhosh and K. Dong-Won, “Preparation and characterization of highly conductive transparent films with single-walled carbon nanotubes for flexible display applications,” Carbon 47, 2436–2441 (2009).

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 3(7), 1767–1774 (2009).
[CrossRef] [PubMed]

2008

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

2005

H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 86, 183503 (2005).

J. Huang, P. Miller, J. Wilson, A. Mello, J. Mello, and D. Bradley, “Investigation of the effects of doping and postdeposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films,” Adv. Funct. Mater. 15(2), 290–296 (2005).
[CrossRef]

2004

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

L. Hu, D. S. Hecht, and G. Grüner, “Percolation in transparent and conducting carbon nanotube networks,” Nano Lett. 4(12), 2513–2517 (2004).
[CrossRef]

2001

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1-2), 201–205 (2001).
[CrossRef]

1952

E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952).
[CrossRef]

1950

R. B. Dingle, “The Electrical Conductivity of Thin Wires,” Proc. R. Soc. Lond. A Math. Phys. Sci. 201(1067), 545–560 (1950).
[CrossRef]

1938

K. Fuchs and N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Camb. Philos. Soc. 34(01), 100–108 (1938).
[CrossRef]

1907

L. Rayleigh, “III.Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philosophical Magazine Series 6 14(79), 60–65 (1907).
[CrossRef]

Ahn, J.

Ahn, J.-H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Barnes, T. M.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[CrossRef]

Bartoli, F. J.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci Rep 3, 2840 (2013).
[CrossRef] [PubMed]

Beard, M. C.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[CrossRef]

Bergeson, J. D.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[CrossRef]

Blackburn, J. L.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[CrossRef]

Blau, W. J.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 3(7), 1767–1774 (2009).
[CrossRef] [PubMed]

Boland, J. J.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 3(7), 1767–1774 (2009).
[CrossRef] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Bradley, D.

J. Huang, P. Miller, J. Wilson, A. Mello, J. Mello, and D. Bradley, “Investigation of the effects of doping and postdeposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films,” Adv. Funct. Mater. 15(2), 290–296 (2005).
[CrossRef]

Braun, J.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[CrossRef] [PubMed]

Brijs, B.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Brongersma, S. H.

D. Josell, S. H. Brongersma, and Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009).
[CrossRef]

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Bult, J.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[CrossRef]

Catrysse, P. B.

P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[CrossRef] [PubMed]

Chen, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1-2), 201–205 (2001).
[CrossRef]

Choi, C. G.

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

Choi, H.

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

Choi, J.-Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Choi, K.-H.

M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013).
[CrossRef] [PubMed]

Choi, S. Y.

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

Chua, S.-J.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1-2), 201–205 (2001).
[CrossRef]

Coleman, J. N.

S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4(12), 7064–7072 (2010).
[CrossRef] [PubMed]

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 3(7), 1767–1774 (2009).
[CrossRef] [PubMed]

Connor, S. T.

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Cotterell, B.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1-2), 201–205 (2001).
[CrossRef]

Cui, Y.

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

De, S.

S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4(12), 7064–7072 (2010).
[CrossRef] [PubMed]

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 3(7), 1767–1774 (2009).
[CrossRef] [PubMed]

Dingle, R. B.

R. B. Dingle, “The Electrical Conductivity of Thin Wires,” Proc. R. Soc. Lond. A Math. Phys. Sci. 201(1067), 545–560 (1950).
[CrossRef]

Doherty, E. M.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 3(7), 1767–1774 (2009).
[CrossRef] [PubMed]

Dong-Won, K.

P. Santhosh and K. Dong-Won, “Preparation and characterization of highly conductive transparent films with single-walled carbon nanotubes for flexible display applications,” Carbon 47, 2436–2441 (2009).

Dressel, M.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[CrossRef] [PubMed]

Du, X.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Ellmer, K.

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[CrossRef]

Fan, S.

P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[CrossRef] [PubMed]

Ferrari, A.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Froyen, L.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Fuchs, K.

K. Fuchs and N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Camb. Philos. Soc. 34(01), 100–108 (1938).
[CrossRef]

Gao, T.

Gao, Y.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci Rep 3, 2840 (2013).
[CrossRef] [PubMed]

Gompf, B.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[CrossRef] [PubMed]

Grüner, G.

L. Hu, D. S. Hecht, and G. Grüner, “Percolation in transparent and conducting carbon nanotube networks,” Nano Lett. 4(12), 2513–2517 (2004).
[CrossRef]

Guenther, E.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1-2), 201–205 (2001).
[CrossRef]

Han-Ki, K.

A. J. Jin and K. Han-Ki, “Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1801–1809 (2009).

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Hebard, A. F.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Hecht, D. S.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

L. Hu, D. S. Hecht, and G. Grüner, “Percolation in transparent and conducting carbon nanotube networks,” Nano Lett. 4(12), 2513–2517 (2004).
[CrossRef]

Higgins, T. M.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 3(7), 1767–1774 (2009).
[CrossRef] [PubMed]

Hong, B. H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Hong, S.

P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater. 24(25), 3326–3332 (2012).
[CrossRef] [PubMed]

Hu, L.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

L. Hu, D. S. Hecht, and G. Grüner, “Percolation in transparent and conducting carbon nanotube networks,” Nano Lett. 4(12), 2513–2517 (2004).
[CrossRef]

Huang, J.

J. Huang, P. Miller, J. Wilson, A. Mello, J. Mello, and D. Bradley, “Investigation of the effects of doping and postdeposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films,” Adv. Funct. Mater. 15(2), 290–296 (2005).
[CrossRef]

Huh, M. S.

H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 86, 183503 (2005).

Irvin, G.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

Jang, H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Jeong, S.

H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 86, 183503 (2005).

Jeong, S. J.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, and S. O. Kim, “Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Jin, A. J.

A. J. Jin and K. Han-Ki, “Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1801–1809 (2009).

Josell, D.

D. Josell, S. H. Brongersma, and Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009).
[CrossRef]

Kamaras, K.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Khan, U.

S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4(12), 7064–7072 (2010).
[CrossRef] [PubMed]

Kim, B. H.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, and S. O. Kim, “Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Kim, D. G.

H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 86, 183503 (2005).

Kim, D.-G.

M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013).
[CrossRef] [PubMed]

Kim, H.-K.

M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013).
[CrossRef] [PubMed]

H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 86, 183503 (2005).

Kim, J. B.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, and S. O. Kim, “Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Kim, J. E.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, and S. O. Kim, “Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Kim, J. M.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Kim, K.

H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 86, 183503 (2005).

Kim, K. S.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Kim, P.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Kim, S. H.

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

Kim, S. M.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, and S. O. Kim, “Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Kim, S. O.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, and S. O. Kim, “Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Kim, S.-Y.

M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013).
[CrossRef] [PubMed]

King, P. J.

S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4(12), 7064–7072 (2010).
[CrossRef] [PubMed]

Ko, S. H.

P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater. 24(25), 3326–3332 (2012).
[CrossRef] [PubMed]

Kobiela, G.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[CrossRef] [PubMed]

Larsen, B. A.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[CrossRef]

Lee, D.

P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater. 24(25), 3326–3332 (2012).
[CrossRef] [PubMed]

Lee, D.-Y.

M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013).
[CrossRef] [PubMed]

Lee, H.

M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013).
[CrossRef] [PubMed]

P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater. 24(25), 3326–3332 (2012).
[CrossRef] [PubMed]

Lee, J.

P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater. 24(25), 3326–3332 (2012).
[CrossRef] [PubMed]

Lee, J.-Y.

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Lee, K.

K. Lee, S. H. Song, and J. Ahn, “FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes,” Opt. Express 22(6), 6269–6275 (2014).
[CrossRef] [PubMed]

M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013).
[CrossRef] [PubMed]

Lee, K. S.

H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 86, 183503 (2005).

Lee, M.-S.

M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013).
[CrossRef] [PubMed]

Lee, P.

P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater. 24(25), 3326–3332 (2012).
[CrossRef] [PubMed]

Lee, S. S.

P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater. 24(25), 3326–3332 (2012).
[CrossRef] [PubMed]

Lee, S. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Leu, P. W.

Logan, J. M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Lyons, P. E.

S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4(12), 7064–7072 (2010).
[CrossRef] [PubMed]

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 3(7), 1767–1774 (2009).
[CrossRef] [PubMed]

Maex, K.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Mello, A.

J. Huang, P. Miller, J. Wilson, A. Mello, J. Mello, and D. Bradley, “Investigation of the effects of doping and postdeposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films,” Adv. Funct. Mater. 15(2), 290–296 (2005).
[CrossRef]

Mello, J.

J. Huang, P. Miller, J. Wilson, A. Mello, J. Mello, and D. Bradley, “Investigation of the effects of doping and postdeposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films,” Adv. Funct. Mater. 15(2), 290–296 (2005).
[CrossRef]

Miller, P.

J. Huang, P. Miller, J. Wilson, A. Mello, J. Mello, and D. Bradley, “Investigation of the effects of doping and postdeposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films,” Adv. Funct. Mater. 15(2), 290–296 (2005).
[CrossRef]

Moon, H. S.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, and S. O. Kim, “Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

Mott, N. F.

K. Fuchs and N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Camb. Philos. Soc. 34(01), 100–108 (1938).
[CrossRef]

Nam, K. H.

P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater. 24(25), 3326–3332 (2012).
[CrossRef] [PubMed]

Nam, S.

M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013).
[CrossRef] [PubMed]

Nikolou, M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Nirmalraj, P. N.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 3(7), 1767–1774 (2009).
[CrossRef] [PubMed]

Palmans, R.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Park, J.

M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013).
[CrossRef] [PubMed]

Park, J.-U.

M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013).
[CrossRef] [PubMed]

Peumans, P.

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Polman, A.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

Rayleigh, L.

L. Rayleigh, “III.Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philosophical Magazine Series 6 14(79), 60–65 (1907).
[CrossRef]

Reese, M. O.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[CrossRef]

Reynolds, J. R.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Richard, O.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Rinzler, A. G.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Santhosh, P.

P. Santhosh and K. Dong-Won, “Preparation and characterization of highly conductive transparent films with single-walled carbon nanotubes for flexible display applications,” Carbon 47, 2436–2441 (2009).

Seong, T.-Y.

H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 86, 183503 (2005).

Sippel, J.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Sondheimer, E. H.

E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952).
[CrossRef]

Song, S. H.

Spinelli, P.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Tanner, D. B.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Tokei, Z.

D. Josell, S. H. Brongersma, and Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009).
[CrossRef]

van de Groep, J.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

Van de Lagemaat, J.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[CrossRef]

Wang, W.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1-2), 201–205 (2001).
[CrossRef]

Wilson, J.

J. Huang, P. Miller, J. Wilson, A. Mello, J. Mello, and D. Bradley, “Investigation of the effects of doping and postdeposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films,” Adv. Funct. Mater. 15(2), 290–296 (2005).
[CrossRef]

Wu, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Yeo, J.

P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater. 24(25), 3326–3332 (2012).
[CrossRef] [PubMed]

Youn, D. H.

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

Yu, Y. J.

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

Zeng, B.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci Rep 3, 2840 (2013).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Zhao, Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

ACS Nano

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 3(7), 1767–1774 (2009).
[CrossRef] [PubMed]

S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4(12), 7064–7072 (2010).
[CrossRef] [PubMed]

Adv. Energy Mater.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012).
[CrossRef]

Adv. Funct. Mater.

J. Huang, P. Miller, J. Wilson, A. Mello, J. Mello, and D. Bradley, “Investigation of the effects of doping and postdeposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films,” Adv. Funct. Mater. 15(2), 290–296 (2005).
[CrossRef]

Adv. Mater.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater. 24(25), 3326–3332 (2012).
[CrossRef] [PubMed]

Adv. Phys.

E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952).
[CrossRef]

Annu. Rev. Mater. Res.

D. Josell, S. H. Brongersma, and Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009).
[CrossRef]

Appl. Phys. Lett.

H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 86, 183503 (2005).

Carbon

P. Santhosh and K. Dong-Won, “Preparation and characterization of highly conductive transparent films with single-walled carbon nanotubes for flexible display applications,” Carbon 47, 2436–2441 (2009).

Math. Proc. Camb. Philos. Soc.

K. Fuchs and N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Camb. Philos. Soc. 34(01), 100–108 (1938).
[CrossRef]

Microelectron. Eng.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004).
[CrossRef]

Nano Lett.

L. Hu, D. S. Hecht, and G. Grüner, “Percolation in transparent and conducting carbon nanotube networks,” Nano Lett. 4(12), 2513–2517 (2004).
[CrossRef]

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, and S. O. Kim, “Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement,” Nano Lett. 9(6), 2300–2305 (2009).
[CrossRef] [PubMed]

M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013).
[CrossRef] [PubMed]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[CrossRef] [PubMed]

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[CrossRef] [PubMed]

Nanotechnology

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013).
[CrossRef] [PubMed]

Nat. Photonics

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Nature

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Opt. Express

Philosophical Magazine Series 6

L. Rayleigh, “III.Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philosophical Magazine Series 6 14(79), 60–65 (1907).
[CrossRef]

Phys. Rev. Lett.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci.

R. B. Dingle, “The Electrical Conductivity of Thin Wires,” Proc. R. Soc. Lond. A Math. Phys. Sci. 201(1067), 545–560 (1950).
[CrossRef]

Sci Rep

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci Rep 3, 2840 (2013).
[CrossRef] [PubMed]

Science

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells

A. J. Jin and K. Han-Ki, “Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1801–1809 (2009).

Thin Solid Films

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1-2), 201–205 (2001).
[CrossRef]

Other

M. C. Rosamond, A. J. Gallant, J. J. Atherton, M. C. Petty, O. Kolosov, and D. A. Zeze, “Transparent gold nanowire electrodes,” in the 11th IEEE Conference on Nanotechnology (IEEE-NANO, 2011), pp. 604–607.

D. Maystre, “Theory of Wood’s Anomalies,” in Plasmonics, S. Enoch, and N. Bonod, eds. (Springer, 2012), pp. 39–83.

F. Solutions, “Lumerical Solutions Inc,” Vancouver, British Columbia, Canada (Accessed January 2013), http://www.lumerical.com/tcad-products/fdtd (2003).

W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics 2012–2013 (CRC Press, 2012).

N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Saunders College, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

TE-pol light transmission spectra of metal grids with 50 and 100 nm linewidths. 95% opening ratio structure spectra are shown in the 1st column and 90% opening ratio structure spectra are shown in the 2nd column. Solid lines indicate metal grid transmission data without substrates and dash lines indicate data for metal grids on substrates. Black lines correspond to Ag and red lines to Al. Vertical dashed (top left) lines indicate RA wavelengths of the grids on substrate.

Fig. 2
Fig. 2

The electric fields at the Rayleigh wavelengths around the 50 nm Ag grid with a 95% opening ratio. ‘m’ indicates the integer of the Rayleigh anomaly equation. White squares and lines denote the grids and interfaces between air and substrate, respectively. Incident light propagates from bottom to top.

Fig. 3
Fig. 3

TM-pol light transmission spectra of metal grids with 50 and 100 nm linewidths. The 1st column exhibits transmission spectra for 95% opening ratio structures and the 2nd column for 90% opening ratio structures. Solid lines and dashed lines show the transmission spectra of metal grids without and with substrates, respectively. Black lines correspond to Ag data and red lines Al. The insets show the absorbed power around the metal grids.

Fig. 4
Fig. 4

The average transmittances of various grids versus their linewidths. Black squares and red circles denote the transmittance of grids without and with substrates, respectively. “Substrate-referenced” (blue triangle) indicates the transmittances of grids on substrates excluding light losses attributed to substrates.

Fig. 5
Fig. 5

(a) TE and TM-pol light transmittance spectra of the 2D and 1D Ag grids. Both grids have linewidths of 50 nm and periods of 1µm. (b) TE and TM-pol light losses (1 – transmittance) of the 2D grid and the sum of the light losses of the 1D grid.

Fig. 6
Fig. 6

Figures of merit (FoM) of metal grids as functions of grid linewidths. Black circles correspond to Ag grid data and red circles to Al grid data. Open circles correspond to 95% opening ratio and closed circles to 90% opening ratio. Micron-scale grids show superior FoM values compared to nano-scale grids because of the higher electrical resistivities of nanogrids.

Metrics