Abstract

We have reported continuous-wave (CW) and Q-switched operations of a polycrystalline ceramic Ho:LuAG laser in band pumped by a Tm:fiber laser at the wavelength of 1907 nm. By using an output coupler of 20% transmission, maximum continuous-wave output power of 2.87 W for 9.72 W of incident pump power was achieved, corresponding to a slope efficiency of 31.9%. Shortest pulse duration of 21.0 ns with peak power of 28.2 kW has been obtained at 500 Hz pulse repetition frequency (PRF) under 5.65 W of incident pump power.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics (Intech, 2010), pp. 471–500.
  2. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–727 (2000).
    [CrossRef]
  3. E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt. 45(16), 3839–3845 (2006).
    [CrossRef] [PubMed]
  4. F. Wang, D. Y. Shen, D. Y. Fan, and Q. S. Lu, “Widely tunable dual-wavelength operation of a high-power Tm:fiber laser using volume Bragg gratings,” Opt. Lett. 35(14), 2388–2390 (2010).
    [CrossRef] [PubMed]
  5. Y. J. Shen, B. Q. Yao, X. M. Duan, G. L. Zhu, W. Wang, Y. L. Ju, and Y. Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett. 37(17), 3558–3560 (2012).
    [CrossRef] [PubMed]
  6. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
    [CrossRef]
  7. D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu3Al5O12,” Opt. Lett. 21(10), 728–730 (1996).
    [CrossRef] [PubMed]
  8. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photon. 2(12), 721–727 (2008).
    [CrossRef]
  9. J. Wisdom, M. Digonnet, and R. L. Byer, “Ceramic lasers: ready for action,” Photon. Spectra 38, 2–8 (2004).
  10. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
    [CrossRef]
  11. T. Taira, “Ceramic YAG lasers,” C. R. Phys. 8(2), 138–152 (2007).
    [CrossRef]
  12. T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
    [CrossRef]
  13. P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12μm,” Opt. Mater. Express 1(8), 1447–1456 (2011).
    [CrossRef]
  14. G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 µm laser,” Opt. Express 19(4), 3604–3611 (2011).
    [CrossRef] [PubMed]
  15. H. Chen, D. Y. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao, and X. F. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
  16. T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B, published on line.
  17. L. Wang, C. Q. Gao, M. W. Gao, Y. Li, F. Y. Yue, J. Zhang, and D. Y. Tang, “A resonantly-pumped tunable Q-switched Ho:YAG ceramic laser with diffraction-limit beam quality,” Opt. Express 22(1), 254–261 (2014).
    [CrossRef] [PubMed]
  18. X. M. Duan, B. Q. Yao, G. Li, Y. L. Ju, Y. Z. Wang, and G. J. Zhao, “High efficient actively Q-switched Ho:LuAG laser,” Opt. Express 17(24), 21691–21697 (2009).
    [CrossRef] [PubMed]
  19. H. Yang, J. Zhang, D. W. Luo, H. Lin, H. Chen, D. Y. Shen, and D. Y. Tang, “Optical properties and laser performance of Ho:LuAG ceramics,” Phys. Status Solidi C 10(6), 903–906 (2013).
    [CrossRef]

2014 (1)

2013 (1)

H. Yang, J. Zhang, D. W. Luo, H. Lin, H. Chen, D. Y. Shen, and D. Y. Tang, “Optical properties and laser performance of Ho:LuAG ceramics,” Phys. Status Solidi C 10(6), 903–906 (2013).
[CrossRef]

2012 (2)

Y. J. Shen, B. Q. Yao, X. M. Duan, G. L. Zhu, W. Wang, Y. L. Ju, and Y. Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett. 37(17), 3558–3560 (2012).
[CrossRef] [PubMed]

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[CrossRef]

2011 (3)

2010 (1)

2009 (1)

2008 (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photon. 2(12), 721–727 (2008).
[CrossRef]

2007 (2)

T. Taira, “Ceramic YAG lasers,” C. R. Phys. 8(2), 138–152 (2007).
[CrossRef]

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[CrossRef]

2006 (2)

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt. 45(16), 3839–3845 (2006).
[CrossRef] [PubMed]

2004 (1)

J. Wisdom, M. Digonnet, and R. L. Byer, “Ceramic lasers: ready for action,” Photon. Spectra 38, 2–8 (2004).

2000 (1)

1996 (1)

Arisholm, G.

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photon. 2(12), 721–727 (2008).
[CrossRef]

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Barnes, N. P.

Budni, P. A.

Byer, R. L.

J. Wisdom, M. Digonnet, and R. L. Byer, “Ceramic lasers: ready for action,” Photon. Spectra 38, 2–8 (2004).

Chen, H.

H. Yang, J. Zhang, D. W. Luo, H. Lin, H. Chen, D. Y. Shen, and D. Y. Tang, “Optical properties and laser performance of Ho:LuAG ceramics,” Phys. Status Solidi C 10(6), 903–906 (2013).
[CrossRef]

H. Chen, D. Y. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao, and X. F. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).

Chicklis, E. P.

Digonnet, M.

J. Wisdom, M. Digonnet, and R. L. Byer, “Ceramic lasers: ready for action,” Photon. Spectra 38, 2–8 (2004).

Duan, X. M.

Dubinskii, M.

Fan, D. Y.

Fuhrberg, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12μm,” Opt. Mater. Express 1(8), 1447–1456 (2011).
[CrossRef]

Gao, C. Q.

Gao, M. W.

Hart, D. W.

Huber, G.

Ikesue, A.

G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 µm laser,” Opt. Express 19(4), 3604–3611 (2011).
[CrossRef] [PubMed]

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photon. 2(12), 721–727 (2008).
[CrossRef]

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Jani, M.

Ju, Y. L.

Kamimura, T.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Koopmann, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12μm,” Opt. Mater. Express 1(8), 1447–1456 (2011).
[CrossRef]

Lamrini, S.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12μm,” Opt. Mater. Express 1(8), 1447–1456 (2011).
[CrossRef]

Lemons, M. L.

Li, G.

Li, Y.

Lin, H.

H. Yang, J. Zhang, D. W. Luo, H. Lin, H. Chen, D. Y. Shen, and D. Y. Tang, “Optical properties and laser performance of Ho:LuAG ceramics,” Phys. Status Solidi C 10(6), 903–906 (2013).
[CrossRef]

Lippert, E.

Lu, Q. S.

Luo, D. W.

H. Yang, J. Zhang, D. W. Luo, H. Lin, H. Chen, D. Y. Shen, and D. Y. Tang, “Optical properties and laser performance of Ho:LuAG ceramics,” Phys. Status Solidi C 10(6), 903–906 (2013).
[CrossRef]

Merkle, L. D.

Messing, G.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Michael, A.

Miller, C. A.

Mosto, J. R.

Newburgh, G. A.

Nicolas, S.

Pomeranz, L. A.

Rustad, G.

Schäfer, M.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12μm,” Opt. Mater. Express 1(8), 1447–1456 (2011).
[CrossRef]

Scholle, K.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12μm,” Opt. Mater. Express 1(8), 1447–1456 (2011).
[CrossRef]

Shen, D. Y.

Shen, Y. J.

Stenersen, K.

Taira, T.

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[CrossRef]

T. Taira, “Ceramic YAG lasers,” C. R. Phys. 8(2), 138–152 (2007).
[CrossRef]

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Tang, D. Y.

Wang, F.

Wang, L.

Wang, W.

Wang, Y. Z.

Wisdom, J.

J. Wisdom, M. Digonnet, and R. L. Byer, “Ceramic lasers: ready for action,” Photon. Spectra 38, 2–8 (2004).

Word-Daniels, A.

Yang, H.

H. Yang, J. Zhang, D. W. Luo, H. Lin, H. Chen, D. Y. Shen, and D. Y. Tang, “Optical properties and laser performance of Ho:LuAG ceramics,” Phys. Status Solidi C 10(6), 903–906 (2013).
[CrossRef]

H. Chen, D. Y. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao, and X. F. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).

Yang, X. F.

Yao, B. Q.

Yoshida, K.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Yue, F. Y.

Zhang, J.

Zhao, G. J.

Zhao, T.

Zhu, G. L.

Annu. Rev. Mater. Res. (1)

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[CrossRef]

C. R. Phys. (1)

T. Taira, “Ceramic YAG lasers,” C. R. Phys. 8(2), 138–152 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photon. 2(12), 721–727 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. Express (1)

Photon. Spectra (1)

J. Wisdom, M. Digonnet, and R. L. Byer, “Ceramic lasers: ready for action,” Photon. Spectra 38, 2–8 (2004).

Phys. Status Solidi C (1)

H. Yang, J. Zhang, D. W. Luo, H. Lin, H. Chen, D. Y. Shen, and D. Y. Tang, “Optical properties and laser performance of Ho:LuAG ceramics,” Phys. Status Solidi C 10(6), 903–906 (2013).
[CrossRef]

Other (2)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics (Intech, 2010), pp. 471–500.

T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B, published on line.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Single-pass absorption of 1907 nm pump light in 1.0 at.% ceramic Ho:LuAG of 13.2 mm length.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup.

Fig. 3
Fig. 3

Laser output power as a function of incident pump power for different output-coupling transmissions. Insert: the spectral output of the Ho:LuAG laser.

Fig. 4
Fig. 4

Output energy of the Ho:LuAG ceramic laser verse incident pump power.

Fig. 5
Fig. 5

Pulse energy and pulse width versus PRF in Q-switched operation.

Fig. 6
Fig. 6

Typical pulse train under the incident pump power of 5.65 W and Single-pulse envelope.

Fig. 7
Fig. 7

Beam quality of the Q-switched Ho:LuAG ceramic.

Metrics