Abstract

We have numerically analyzed the electromagnetic and electrical characteristics of InAsSb nBn infrared detectors employing a photon-trapping (PT) structure realized with a periodic array of pyramids intended to provide broadband operation. The three-dimensional numerical simulation model was verified by comparing the simulated dark current and quantum efficiency to experimental data. Then, the power and flexibility of the nBn PT design was used to engineer spectrally filtering PT structures. That is, detectors that have a predetermined spectral response to be more sensitive in certain spectral ranges and less sensitive in others.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).
  2. C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).
    [CrossRef]
  3. J. Schuster and E. Bellotti, “Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays,” Opt. Express 21, 14712–14727 (2013).
    [CrossRef] [PubMed]
  4. A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
    [CrossRef]
  5. A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
    [CrossRef]
  6. D. Hobbs and B. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 349–364 (2005).
    [CrossRef]
  7. B. D. MacLeod and D. S. Hobbs, “Long life, high performance anti-reflection treatment for HgCdTe infrared focal plane arrays,” Proc. SPIE 6940, 69400Y (2008).
    [CrossRef]
  8. S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89, 151109 (2006).
    [CrossRef]
  9. P. Klipstein, “Depletion-less photodiode with suppressed dark current and method for producing the same,” U.S. Patent 7,795,640, Sept. 14, 2010; Foreign application priority data July 2, 2003.
  10. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), 3rd ed.
  11. Synopsys, Sentaurus Device Electromagnetic Wave Solver User Guide(2013). Version H-2013.03.
  12. Synopsys, Sentaurus Device User Guide(2013). Version H-2013.03.
  13. E. Bellotti and D. D’Orsogna, “Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors,” IEEE J. Quantum Electron. 42, 418–426 (2006).
    [CrossRef]
  14. D. D’Orsogna, S. P. Tobin, and E. Bellotti, “Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection,” J. Electron. Mater. 37, 1349–1355 (2008).
    [CrossRef]
  15. C. A. Keasler and E. Bellotti, “Three-dimensional electromagnetic and electrical simulation of HgCdTe pixel arrays,” J. Electron. Mater. 40, 1795–1801 (2011).
    [CrossRef]
  16. J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, “Numerical simulation of third-generation HgCdTe detector pixel arrays,” IEEE J. Select. Topics Quantum Electron. 19, 3800415 (2013).
    [CrossRef]
  17. H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
    [CrossRef]
  18. A. D’Souza, E. Robinson, A. Ionescu, D. Okerlund, T. de Lyon, R. Rajavel, H. Sharifi, N. Dhar, P. Wijewarnasuriya, and C. Grein, “MWIR HgCdTe and InAs1−xSbx detector comparison,” The US Workshop on the Physics and Chemistry of II–VI Materials, Seattle, WA (2012).
  19. M. Reine, A. Sood, and T. Tredwell, Mercury Cadmium Telluride, Semiconductors and Semimetals, R.K. Willardson and A.C. Beer, eds. (Academic, 1966), Vol. 18, Chap. 6, pp. 201–312.
    [CrossRef]
  20. J. Schuster and E. Bellotti, “Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays,” Appl. Phys. Lett. 101, 261118 (2012).
    [CrossRef]
  21. X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19, A841–A850 (2011).
    [CrossRef] [PubMed]
  22. S. Campana, The Infrared & Electro-Optical Systems Handbook, (Copublished by Infrared Information Analysis Center and SPIE, 1993), Vol. 5.
  23. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 2007), 2nd ed.
  24. S. Adachi, III–V Compound Semiconductors of Handbook of Physical Properties of Semiconductors (Kluwer Academic Publishers, 2004), Vol. 2.
  25. IOFFE, http://www.ioffe.ru/SVA/NSM//Semicond/InAsSb/basic.html (2013). And references provided.
  26. A. Rogalski, R. Ciupa, and W. Larkowski, “Near room-temperature InAsSb photodiodes: Theoretical predictions and experimental data,” Solid-State Electron. 39, 1593–1600 (1996).
    [CrossRef]
  27. A. Rogalski, New Ternary Alloy Systems for Infrared Detectors (SPIE, 1994).
  28. O. Madelung, Semiconductors - Basic Data (Springer, 1996).
    [CrossRef]
  29. C. Grein, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA (personal communication, 2013).
  30. S. Jain, J. McGregor, and D. Roulston, “Band-gap narrowing in novel III–V semiconductors,” J. Appl. Phys. 68, 3747–3749 (1990).
    [CrossRef]
  31. P. Paskov, “Refractive indices of InSb, GaSb, InAsxSb1−x and In1−xGaxSb: Effect of free carriers,” J. Appl. Phys. 81, 1890–1898 (1997).
    [CrossRef]
  32. E. D. Palik and R. T. Holm, Handbook of Optical Constants of Solids, (Academic, 1998), Vol. 1.
  33. I. Vurgaftman, J. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
    [CrossRef]

2013 (3)

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, “Numerical simulation of third-generation HgCdTe detector pixel arrays,” IEEE J. Select. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

J. Schuster and E. Bellotti, “Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays,” Opt. Express 21, 14712–14727 (2013).
[CrossRef] [PubMed]

2012 (2)

J. Schuster and E. Bellotti, “Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays,” Appl. Phys. Lett. 101, 261118 (2012).
[CrossRef]

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
[CrossRef]

2011 (4)

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).
[CrossRef]

X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19, A841–A850 (2011).
[CrossRef] [PubMed]

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

C. A. Keasler and E. Bellotti, “Three-dimensional electromagnetic and electrical simulation of HgCdTe pixel arrays,” J. Electron. Mater. 40, 1795–1801 (2011).
[CrossRef]

2008 (2)

D. D’Orsogna, S. P. Tobin, and E. Bellotti, “Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection,” J. Electron. Mater. 37, 1349–1355 (2008).
[CrossRef]

B. D. MacLeod and D. S. Hobbs, “Long life, high performance anti-reflection treatment for HgCdTe infrared focal plane arrays,” Proc. SPIE 6940, 69400Y (2008).
[CrossRef]

2006 (2)

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89, 151109 (2006).
[CrossRef]

E. Bellotti and D. D’Orsogna, “Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors,” IEEE J. Quantum Electron. 42, 418–426 (2006).
[CrossRef]

2005 (1)

D. Hobbs and B. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 349–364 (2005).
[CrossRef]

2001 (1)

I. Vurgaftman, J. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[CrossRef]

1997 (1)

P. Paskov, “Refractive indices of InSb, GaSb, InAsxSb1−x and In1−xGaxSb: Effect of free carriers,” J. Appl. Phys. 81, 1890–1898 (1997).
[CrossRef]

1996 (1)

A. Rogalski, R. Ciupa, and W. Larkowski, “Near room-temperature InAsSb photodiodes: Theoretical predictions and experimental data,” Solid-State Electron. 39, 1593–1600 (1996).
[CrossRef]

1990 (1)

S. Jain, J. McGregor, and D. Roulston, “Band-gap narrowing in novel III–V semiconductors,” J. Appl. Phys. 68, 3747–3749 (1990).
[CrossRef]

Adachi, S.

S. Adachi, III–V Compound Semiconductors of Handbook of Physical Properties of Semiconductors (Kluwer Academic Publishers, 2004), Vol. 2.

Beliciu, M. L.

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

Bellotti, E.

J. Schuster and E. Bellotti, “Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays,” Opt. Express 21, 14712–14727 (2013).
[CrossRef] [PubMed]

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, “Numerical simulation of third-generation HgCdTe detector pixel arrays,” IEEE J. Select. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

J. Schuster and E. Bellotti, “Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays,” Appl. Phys. Lett. 101, 261118 (2012).
[CrossRef]

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).
[CrossRef]

C. A. Keasler and E. Bellotti, “Three-dimensional electromagnetic and electrical simulation of HgCdTe pixel arrays,” J. Electron. Mater. 40, 1795–1801 (2011).
[CrossRef]

D. D’Orsogna, S. P. Tobin, and E. Bellotti, “Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection,” J. Electron. Mater. 37, 1349–1355 (2008).
[CrossRef]

E. Bellotti and D. D’Orsogna, “Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors,” IEEE J. Quantum Electron. 42, 418–426 (2006).
[CrossRef]

C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).

Campana, S.

S. Campana, The Infrared & Electro-Optical Systems Handbook, (Copublished by Infrared Information Analysis Center and SPIE, 1993), Vol. 5.

Chang, D.

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

Chen, G.

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

Ciupa, R.

A. Rogalski, R. Ciupa, and W. Larkowski, “Near room-temperature InAsSb photodiodes: Theoretical predictions and experimental data,” Solid-State Electron. 39, 1593–1600 (1996).
[CrossRef]

Cline, M.

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

Cook, J.

C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).

D’Orsogna, D.

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, “Numerical simulation of third-generation HgCdTe detector pixel arrays,” IEEE J. Select. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

D. D’Orsogna, S. P. Tobin, and E. Bellotti, “Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection,” J. Electron. Mater. 37, 1349–1355 (2008).
[CrossRef]

E. Bellotti and D. D’Orsogna, “Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors,” IEEE J. Quantum Electron. 42, 418–426 (2006).
[CrossRef]

D’Souza, A.

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

A. D’Souza, E. Robinson, A. Ionescu, D. Okerlund, T. de Lyon, R. Rajavel, H. Sharifi, N. Dhar, P. Wijewarnasuriya, and C. Grein, “MWIR HgCdTe and InAs1−xSbx detector comparison,” The US Workshop on the Physics and Chemistry of II–VI Materials, Seattle, WA (2012).

D’Souza, A. I.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
[CrossRef]

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

Dai, W.

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

Dawson, L. C.

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

De Lyon, T.

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

A. D’Souza, E. Robinson, A. Ionescu, D. Okerlund, T. de Lyon, R. Rajavel, H. Sharifi, N. Dhar, P. Wijewarnasuriya, and C. Grein, “MWIR HgCdTe and InAs1−xSbx detector comparison,” The US Workshop on the Physics and Chemistry of II–VI Materials, Seattle, WA (2012).

de Lyon, T. J.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
[CrossRef]

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

Dhar, N.

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
[CrossRef]

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

A. D’Souza, E. Robinson, A. Ionescu, D. Okerlund, T. de Lyon, R. Rajavel, H. Sharifi, N. Dhar, P. Wijewarnasuriya, and C. Grein, “MWIR HgCdTe and InAs1−xSbx detector comparison,” The US Workshop on the Physics and Chemistry of II–VI Materials, Seattle, WA (2012).

Fulk, C.

C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).

Grein, C.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
[CrossRef]

A. D’Souza, E. Robinson, A. Ionescu, D. Okerlund, T. de Lyon, R. Rajavel, H. Sharifi, N. Dhar, P. Wijewarnasuriya, and C. Grein, “MWIR HgCdTe and InAs1−xSbx detector comparison,” The US Workshop on the Physics and Chemistry of II–VI Materials, Seattle, WA (2012).

C. Grein, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA (personal communication, 2013).

Hobbs, D.

D. Hobbs and B. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 349–364 (2005).
[CrossRef]

C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).

Hobbs, D. S.

B. D. MacLeod and D. S. Hobbs, “Long life, high performance anti-reflection treatment for HgCdTe infrared focal plane arrays,” Proc. SPIE 6940, 69400Y (2008).
[CrossRef]

Holm, R. T.

E. D. Palik and R. T. Holm, Handbook of Optical Constants of Solids, (Academic, 1998), Vol. 1.

Ionescu, A.

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

A. D’Souza, E. Robinson, A. Ionescu, D. Okerlund, T. de Lyon, R. Rajavel, H. Sharifi, N. Dhar, P. Wijewarnasuriya, and C. Grein, “MWIR HgCdTe and InAs1−xSbx detector comparison,” The US Workshop on the Physics and Chemistry of II–VI Materials, Seattle, WA (2012).

Ionescu, A. C.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
[CrossRef]

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

Jain, S.

S. Jain, J. McGregor, and D. Roulston, “Band-gap narrowing in novel III–V semiconductors,” J. Appl. Phys. 68, 3747–3749 (1990).
[CrossRef]

Johnson, S. G.

Keasler, C.

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, “Numerical simulation of third-generation HgCdTe detector pixel arrays,” IEEE J. Select. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

Keasler, C. A.

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).
[CrossRef]

C. A. Keasler and E. Bellotti, “Three-dimensional electromagnetic and electrical simulation of HgCdTe pixel arrays,” J. Electron. Mater. 40, 1795–1801 (2011).
[CrossRef]

Khanna, R.

C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).

Kimerling, L. C.

Klipstein, P.

P. Klipstein, “Depletion-less photodiode with suppressed dark current and method for producing the same,” U.S. Patent 7,795,640, Sept. 14, 2010; Foreign application priority data July 2, 2003.

Larkowski, W.

A. Rogalski, R. Ciupa, and W. Larkowski, “Near room-temperature InAsSb photodiodes: Theoretical predictions and experimental data,” Solid-State Electron. 39, 1593–1600 (1996).
[CrossRef]

MacLeod, B.

D. Hobbs and B. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 349–364 (2005).
[CrossRef]

C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).

MacLeod, B. D.

B. D. MacLeod and D. S. Hobbs, “Long life, high performance anti-reflection treatment for HgCdTe infrared focal plane arrays,” Proc. SPIE 6940, 69400Y (2008).
[CrossRef]

Madelung, O.

O. Madelung, Semiconductors - Basic Data (Springer, 1996).
[CrossRef]

Maimon, S.

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89, 151109 (2006).
[CrossRef]

McGregor, J.

S. Jain, J. McGregor, and D. Roulston, “Band-gap narrowing in novel III–V semiconductors,” J. Appl. Phys. 68, 3747–3749 (1990).
[CrossRef]

Mehta, S.

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

Meyer, J.

I. Vurgaftman, J. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[CrossRef]

Michel, J.

Nguyen, H.

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

Okerlund, D.

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
[CrossRef]

A. D’Souza, E. Robinson, A. Ionescu, D. Okerlund, T. de Lyon, R. Rajavel, H. Sharifi, N. Dhar, P. Wijewarnasuriya, and C. Grein, “MWIR HgCdTe and InAs1−xSbx detector comparison,” The US Workshop on the Physics and Chemistry of II–VI Materials, Seattle, WA (2012).

Okerlund, D. L.

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

Palik, E. D.

E. D. Palik and R. T. Holm, Handbook of Optical Constants of Solids, (Academic, 1998), Vol. 1.

Parodos, T.

C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).

Paskov, P.

P. Paskov, “Refractive indices of InSb, GaSb, InAsxSb1−x and In1−xGaxSb: Effect of free carriers,” J. Appl. Phys. 81, 1890–1898 (1997).
[CrossRef]

Pinkie, B.

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, “Numerical simulation of third-generation HgCdTe detector pixel arrays,” IEEE J. Select. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

Rajavel, R.

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

A. D’Souza, E. Robinson, A. Ionescu, D. Okerlund, T. de Lyon, R. Rajavel, H. Sharifi, N. Dhar, P. Wijewarnasuriya, and C. Grein, “MWIR HgCdTe and InAs1−xSbx detector comparison,” The US Workshop on the Physics and Chemistry of II–VI Materials, Seattle, WA (2012).

Rajavel, R. D.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
[CrossRef]

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

Ram-Mohan, L. R.

I. Vurgaftman, J. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[CrossRef]

Reine, M.

C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).

M. Reine, A. Sood, and T. Tredwell, Mercury Cadmium Telluride, Semiconductors and Semimetals, R.K. Willardson and A.C. Beer, eds. (Academic, 1966), Vol. 18, Chap. 6, pp. 201–312.
[CrossRef]

Robinson, E.

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
[CrossRef]

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

A. D’Souza, E. Robinson, A. Ionescu, D. Okerlund, T. de Lyon, R. Rajavel, H. Sharifi, N. Dhar, P. Wijewarnasuriya, and C. Grein, “MWIR HgCdTe and InAs1−xSbx detector comparison,” The US Workshop on the Physics and Chemistry of II–VI Materials, Seattle, WA (2012).

Roebuck, M.

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
[CrossRef]

Rogalski, A.

A. Rogalski, R. Ciupa, and W. Larkowski, “Near room-temperature InAsSb photodiodes: Theoretical predictions and experimental data,” Solid-State Electron. 39, 1593–1600 (1996).
[CrossRef]

A. Rogalski, New Ternary Alloy Systems for Infrared Detectors (SPIE, 1994).

Roulston, D.

S. Jain, J. McGregor, and D. Roulston, “Band-gap narrowing in novel III–V semiconductors,” J. Appl. Phys. 68, 3747–3749 (1990).
[CrossRef]

Salcido, M.

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 2007), 2nd ed.

Schuster, J.

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, “Numerical simulation of third-generation HgCdTe detector pixel arrays,” IEEE J. Select. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

J. Schuster and E. Bellotti, “Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays,” Opt. Express 21, 14712–14727 (2013).
[CrossRef] [PubMed]

J. Schuster and E. Bellotti, “Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays,” Appl. Phys. Lett. 101, 261118 (2012).
[CrossRef]

C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).

Sharifi, H.

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
[CrossRef]

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

A. D’Souza, E. Robinson, A. Ionescu, D. Okerlund, T. de Lyon, R. Rajavel, H. Sharifi, N. Dhar, P. Wijewarnasuriya, and C. Grein, “MWIR HgCdTe and InAs1−xSbx detector comparison,” The US Workshop on the Physics and Chemistry of II–VI Materials, Seattle, WA (2012).

Sheng, X.

Snell, K.

C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).

Sood, A.

M. Reine, A. Sood, and T. Tredwell, Mercury Cadmium Telluride, Semiconductors and Semimetals, R.K. Willardson and A.C. Beer, eds. (Academic, 1966), Vol. 18, Chap. 6, pp. 201–312.
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), 3rd ed.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 2007), 2nd ed.

Tobin, S.

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, “Numerical simulation of third-generation HgCdTe detector pixel arrays,” IEEE J. Select. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).

Tobin, S. P.

D. D’Orsogna, S. P. Tobin, and E. Bellotti, “Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection,” J. Electron. Mater. 37, 1349–1355 (2008).
[CrossRef]

Tredwell, T.

M. Reine, A. Sood, and T. Tredwell, Mercury Cadmium Telluride, Semiconductors and Semimetals, R.K. Willardson and A.C. Beer, eds. (Academic, 1966), Vol. 18, Chap. 6, pp. 201–312.
[CrossRef]

Vurgaftman, I.

I. Vurgaftman, J. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[CrossRef]

Wicks, G. W.

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89, 151109 (2006).
[CrossRef]

Wijewarnasuriya, P.

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

A. D’Souza, E. Robinson, A. Ionescu, D. Okerlund, T. de Lyon, R. Rajavel, H. Sharifi, N. Dhar, P. Wijewarnasuriya, and C. Grein, “MWIR HgCdTe and InAs1−xSbx detector comparison,” The US Workshop on the Physics and Chemistry of II–VI Materials, Seattle, WA (2012).

Wijewarnasuriya, P. S.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
[CrossRef]

Wong, K. K.

C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).

Yap, D.

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
[CrossRef]

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

Appl. Phys. Lett. (3)

S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89, 151109 (2006).
[CrossRef]

J. Schuster and E. Bellotti, “Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays,” Appl. Phys. Lett. 101, 261118 (2012).
[CrossRef]

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Bellotti and D. D’Orsogna, “Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors,” IEEE J. Quantum Electron. 42, 418–426 (2006).
[CrossRef]

IEEE J. Select. Topics Quantum Electron. (1)

J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, “Numerical simulation of third-generation HgCdTe detector pixel arrays,” IEEE J. Select. Topics Quantum Electron. 19, 3800415 (2013).
[CrossRef]

J. Appl. Phys. (3)

S. Jain, J. McGregor, and D. Roulston, “Band-gap narrowing in novel III–V semiconductors,” J. Appl. Phys. 68, 3747–3749 (1990).
[CrossRef]

P. Paskov, “Refractive indices of InSb, GaSb, InAsxSb1−x and In1−xGaxSb: Effect of free carriers,” J. Appl. Phys. 81, 1890–1898 (1997).
[CrossRef]

I. Vurgaftman, J. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001).
[CrossRef]

J. Electron. Mater. (3)

D. D’Orsogna, S. P. Tobin, and E. Bellotti, “Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection,” J. Electron. Mater. 37, 1349–1355 (2008).
[CrossRef]

C. A. Keasler and E. Bellotti, “Three-dimensional electromagnetic and electrical simulation of HgCdTe pixel arrays,” J. Electron. Mater. 40, 1795–1801 (2011).
[CrossRef]

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, H. Sharifi, M. Roebuck, D. Yap, R. D. Rajavel, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “Electrooptical characterization of MWIR InAsSb detectors,” J. Electron. Mater. 41, 2671–2678 (2012).
[CrossRef]

Opt. Express (2)

Proc. SPIE (4)

A. I. D’Souza, A. C. Ionescu, M. Salcido, E. Robinson, L. C. Dawson, D. L. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, M. L. Beliciu, S. Mehta, W. Dai, G. Chen, N. Dhar, and P. Wijewarnasuriya, “InAsSb detectors for visible to MWIR high operating temperature applications,” Proc. SPIE 8012, 80122S (2011).
[CrossRef]

D. Hobbs and B. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 349–364 (2005).
[CrossRef]

B. D. MacLeod and D. S. Hobbs, “Long life, high performance anti-reflection treatment for HgCdTe infrared focal plane arrays,” Proc. SPIE 6940, 69400Y (2008).
[CrossRef]

H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, and N. Dhar, “Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays,” Proc. SPIE 8704, 87041U (2013).
[CrossRef]

Solid-State Electron. (1)

A. Rogalski, R. Ciupa, and W. Larkowski, “Near room-temperature InAsSb photodiodes: Theoretical predictions and experimental data,” Solid-State Electron. 39, 1593–1600 (1996).
[CrossRef]

Other (15)

A. Rogalski, New Ternary Alloy Systems for Infrared Detectors (SPIE, 1994).

O. Madelung, Semiconductors - Basic Data (Springer, 1996).
[CrossRef]

C. Grein, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA (personal communication, 2013).

C. Fulk, S. Tobin, J. Cook, K. K. Wong, T. Parodos, R. Khanna, K. Snell, M. Reine, J. Schuster, E. Bellotti, D. Hobbs, and B. MacLeod, “AWARE broadband - photon trap structures for quantum advanced detectors at BAE Systems,” in Proceedings of Meeting of the Military Sensing Symposia (MSS), (2012).

E. D. Palik and R. T. Holm, Handbook of Optical Constants of Solids, (Academic, 1998), Vol. 1.

A. D’Souza, E. Robinson, A. Ionescu, D. Okerlund, T. de Lyon, R. Rajavel, H. Sharifi, N. Dhar, P. Wijewarnasuriya, and C. Grein, “MWIR HgCdTe and InAs1−xSbx detector comparison,” The US Workshop on the Physics and Chemistry of II–VI Materials, Seattle, WA (2012).

M. Reine, A. Sood, and T. Tredwell, Mercury Cadmium Telluride, Semiconductors and Semimetals, R.K. Willardson and A.C. Beer, eds. (Academic, 1966), Vol. 18, Chap. 6, pp. 201–312.
[CrossRef]

S. Campana, The Infrared & Electro-Optical Systems Handbook, (Copublished by Infrared Information Analysis Center and SPIE, 1993), Vol. 5.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 2007), 2nd ed.

S. Adachi, III–V Compound Semiconductors of Handbook of Physical Properties of Semiconductors (Kluwer Academic Publishers, 2004), Vol. 2.

IOFFE, http://www.ioffe.ru/SVA/NSM//Semicond/InAsSb/basic.html (2013). And references provided.

P. Klipstein, “Depletion-less photodiode with suppressed dark current and method for producing the same,” U.S. Patent 7,795,640, Sept. 14, 2010; Foreign application priority data July 2, 2003.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), 3rd ed.

Synopsys, Sentaurus Device Electromagnetic Wave Solver User Guide(2013). Version H-2013.03.

Synopsys, Sentaurus Device User Guide(2013). Version H-2013.03.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Overview of modeling steps. Input and output of individual steps include, but are not limited to (a) FDTD structured tensor mesh, (b) optical generation rate saved onto FDTD mesh, (c) FEM unstructured mixed element mesh, (d) optical generation rate interpolated from FDTD mesh onto FEM mesh and (e) hole current density.

Fig. 2
Fig. 2

Schematic representation of a single 12μm nBn pixel incorporating the PT structure.

Fig. 3
Fig. 3

Measured and simulated dark current density (a) at 150 K (λc = 4.89μm) and 200 K (λc = 5.08μm) and quantum efficiency (b) at 150 K for non-PT devices with x = 0.195. Experimental data from [18].

Fig. 4
Fig. 4

Simulated reflectance versus wavelength (a) for the non-PT structure (tAL = 5μm) and PT structure. The length of the base of the pyramids has been varied from 1 – 4μm. Simulated QE versus wavelength (b) for the non-PT and PT structures (wPT = 2μm). In all PT cases tPT = 4μm and tAL = 1μm are held constant for a total of 5μm of absorbing material (not including the CL).

Fig. 5
Fig. 5

PT pixel with uniform lattice of pyramids (a) and PT pixel with pyramids removed from the center of the uniform lattice of pyramids to form a cavity (b,c). In this representation tPT = 4μm, wPT = 1μm and tAL = 1μm.

Fig. 6
Fig. 6

Simulated reflectance versus wavelength for the non-PT structure (tAL = 5μm) and the PT structure incorporating a cavity. (a) Pseudo-cavity area varied from 4 × 4μm2 to 10 × 10μm2 with tPT = 4μm and wPT = 1μm held constant. (b) Pyramid height varied from 2 – 4μm with wPT = 1μm and Acav = 10 × 10μm2 held constant. In both cases tAL = 1μm.

Fig. 7
Fig. 7

Simulated QE versus wavelength for the non-PT structure (tAL = 3μm) and the PT structure with and without a pseudo-cavity with tPT = 2μm, wPT = 1μm, tAL = 1μm and Acav = 10 × 10μm2.

Fig. 8
Fig. 8

Simulated reflectance versus wavelength (a) for the non-PT structure (tAL = 3μm) and the PT structure incorporating a pseudo-cavity when tAL is reduced from 1μm to 0.1μm while Acav = 10 × 10μm2, tPT = 2μm and wPT = 1μm are held constant. Simulated QE versus wavelength (b) for all cases on the left except tAL = 0.1μm.

Fig. 9
Fig. 9

Representation of (a) single pixel with perfect cylinders, (b) cross section of the perfect cylinders (Dbase = Dtop = 1.0μm), truncated cones (Dbase = 1.0μm, Dtop = 0.5μm) and perfect cones (Dbase = 1.0μm, Dtop = 0.0μm) along the dashed line in (a) and (c) cross section depicting the important geometrical quantities for the holes: Dbase, Dtop and d (= 2.0μm in all examples).

Fig. 10
Fig. 10

Simulated reflectance (a) and QE (b) versus wavelength for the non-PT structure and the PT structure formed by etching perfectly cylindrical holes into the AL. The AL is 3.0μm thick and the holes are 2.0μm deep, leaving another 1.0μm of unperturbed AL beneath the holes. (a) Simulated reflectance when the hole diameter is varied from 0.5μm to 1.0μm for perfectly cylindrical holes. When the hole diameter is 1.0μm there are a total of 128 holes and when the hole diameter is 0.5μm there are a total of 256 holes. (b) Simulated QE of the hole structure with 1.0μm diameter holes.

Fig. 11
Fig. 11

Simulated reflectance versus wavelength (a) for the non-PT structure and the PT structure formed by etching holes into the AL. The AL is 3.0μm thick and the holes are 2.0μm deep, leaving another 1.0μm of unperturbed AL beneath the holes. Hole geometry varied from perfect cylinders (Dtop = 1.0μm), holes in the shape of perfect cones (Dtop = 0.0μm) and holes in the shape of truncated cones (Dtop = 0.5μm). In all cases Dbase = 1.0μm. Simulated QE versus wavelength (b) for the hole structure with holes in the shape of perfect cylinders and truncated cones.

Fig. 12
Fig. 12

Reflectance versus incident angle θ in (a) linear scale for an infinite slab and non-PT structure and (b) logarithmic scale for the non-PT and PT structures. Conditions are λ = 3μm, T = 150 K, V = −1.0 V. wPT = 2μm, tPT = 4μm and tAL = 1μm are held constant for a total of 5μm of absorbing material (not including the CL).

Fig. 13
Fig. 13

(a) Refractive index values (circles, back in color) taken from [31] for InAs1−xSbx with x = 0.20 and polynomial fit (solid line, red in color). (b) Absorption coefficient calculated using Eq. (16) for values of x and T used in this work.

Tables (3)

Tables Icon

Table 1 Layer parameters for the nBn device, including materials, molar fractions, thickness’s and doping concentrations.

Tables Icon

Table 2 Mobility values at 77 K and 300 K for InAs and InSb from [27]. *Value not from literature (2× value at 300 K). Values of ζe,h obtained by fitting Eq. (7) to mobility data.

Tables Icon

Table 3 Varshni parameters for AlAs and AlSb from [33].

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

R = I R I 0 .
η un = I ph q ϕ A
r x ( TE ) = | η 2 sec θ 2 η 1 sec θ 1 η 2 sec θ 2 + η 1 sec θ 1 | 2 r y ( TM ) = | η 2 cos θ 2 η 1 cos θ 1 η 2 cos θ 2 + η 1 cos θ 1 | 2
m e * = ( 0.023 0.039 x + 0.03 x 2 ) m 0 m l h * = ( 0.026 0.011 x ) m 0 m h h * = ( 0.41 + 0.02 x ) m 0
E g ( x , T ) = 0.411 3.4 × 10 4 T 2 210 + T 0.876 x + 0.70 x 2 + 3.4 × 10 4 x T ( 1 x )
n i ( x , T ) = ( 1.35 + 8.50 x + 4.22 × 10 3 T 1.53 × 10 3 x T 6.73 x 2 ) × 10 14 T 3 / 2 E g 3 / 4 exp [ E g 2 k B T ] ,
μ e , h ( T ) = μ e , h ( 300 K ) ( T 300 ) ζ e , h .
U R = G R ( n p n i 2 ) ,
τ R = 1 G R ( n 0 + p 0 ) ,
G R = 5.8 × 10 13 ε 1 / 2 ( m o m e * + m h * ) 3 / 2 ( 1 + m o m e * + m o m h * ) × ( 300 T ) 3 / 2 ( E g 2 + 3 k B T E g + 3.75 k B 2 T 2 ) ,
U A = ( C n n + C p p ) ( n p n i 2 ) .
τ A = 1 C n ( n 0 + p 0 ) n 0 ,
C n = ( m e * m o ) | F 1 F 2 | 2 2 n i 2 ( 3.8 × 10 18 ) ε 2 ( 1 + m e * m h * ) 1 / 2 ( 1 + 2 m e * m h * ) ( E g k B T ) 3 / 2 exp [ 1 + 2 m e * m h * 1 + m e * m h * E g k B T ]
C p = C n [ 1 3 E g k B T 6 ( 1 5 E g 4 k B T ) ] .
Δ E g = 14.0 × 10 9 N d 1 / 3 + 1.97 × 10 7 N d 1 / 4 + 57.9 × 10 12 N d 1 / 2
α ( E , x , T ) = { 948.23 × exp [ 170 ( E E 0 ) ] , E E g K ( E E g c ) ( E E g c ) 2 c 2 E + 800 , E > E g
E g ( T ) = E g ( T = 0 ) α T 2 T + β ,
E g ( A 1 x B x ) = ( 1 x ) E g ( A ) + x E g ( B ) x ( 1 x ) C

Metrics