Abstract

Fluorescence spectra from individual aerosol particles that were either coated or embedded with metallic nanoparticles (MNPs) was acquired on-the-fly using 266 nm and 355 nm excitation. Using aqueous suspensions of MNPs with either polystyrene latex (PSL) spheres or dissolved proteins (tryptophan or ovalbumin), we generated PSL spheres coated with MNPs, or protein clusters embedded with MNPs as aerosols. Both enhanced and quenched fluorescence intensities were observed as a function of MNP concentration. Optimizing MNP material, size and spacing should yield enhanced sensitivity for specific aerosol materials that could be exploited to improve detection limits of single-particle, on-the-fly fluorescence or Raman based spectroscopic sensors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. V. Konev, Fluorescence and Phosphorescence of Proteins and Nucleic Acids (Plenum, 1967).
  2. T. D. Brock, M. T. Madigan, J. M. Martinko, and J. Parker, Biology of Microorganisms, 7th ed. (Prentice Hall, 1994), Chap. 19.
  3. F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
    [CrossRef]
  4. Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
    [CrossRef]
  5. P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
    [CrossRef] [PubMed]
  6. P. H. Kaye, J. E. Barton, E. Hirst, and J. M. Clark, “Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles,” Appl. Opt. 39(21), 3738–3745 (2000).
    [CrossRef] [PubMed]
  7. V. Sivaprakasam, A. Huston, C. Scotto, and J. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12(19), 4457–4466 (2004).
    [CrossRef] [PubMed]
  8. R. Vehring, C. L. Aardahl, G. Schweiger, and E. J. Davis, “The characterization of fine particles originating from an uncharged aerosol: size dependence and detection limits for Raman analysis,” J. Aerosol Sci. 29(9), 1045–1061 (1998).
    [CrossRef]
  9. C. L. Aardahl, W. R. Foss, and E. J. Davis, “Elastic and inelastic light scattering from distilling microdroplets for thermodynamic studies,” Ind. Eng. Chem. Res. 35(9), 2834–2841 (1996).
    [CrossRef]
  10. G. Schweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol Sci. 21(4), 483–509 (1990).
    [CrossRef]
  11. Y. L. Pan, S. C. Hill, and M. Coleman, “Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra,” Opt. Express 20(5), 5325–5334 (2012).
    [CrossRef] [PubMed]
  12. S. D. Christesen, “Raman cross sections of chemical agents and simulants,” Appl. Spectrosc. 42(2), 318–321 (1988).
    [CrossRef]
  13. K. Ray, M. H. Chowdhury, H. Szmacinski, and J. R. Lakowicz, “Metal-enhanced intrinsic fluorescence of proteins on silver nanostructured surfaces towards label-free detection,” J. Phys. Chem. C. Nanomater. Interfaces 112(46), 17957–17963 (2008).
  14. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2004).
  15. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
    [CrossRef] [PubMed]
  16. A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
    [CrossRef] [PubMed]
  17. A. Sengupta, N. Brar, and E. J. Davis, “Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy,” J. Colloid Interface Sci. 309(1), 36–43 (2007).
    [CrossRef] [PubMed]
  18. J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. 41(12), 1632–1637 (2010).
    [CrossRef]
  19. X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005).
    [CrossRef] [PubMed]
  20. M. A. Matoian, R. Sweetman, E. C. Hall, S. Albanese, and W. B. Euler, “Light trapping to amplify metal enhanced fluorescence with application for sensing TNT,” J. Fluoresc. 23(5), 877–880 (2013).
    [CrossRef] [PubMed]
  21. V. Sivaprakasam, T. Pletcher, J. E. Tucker, A. L. Huston, J. McGinn, D. Keller, and J. D. Eversole, “Classification and selective collection of individual aerosol particles using laser-induced fluorescence,” Appl. Opt. 48(4), B126–B136 (2009).
    [CrossRef] [PubMed]
  22. V. Sivaprakasam, J. E. Tucker, and J. D. Eversole, “Generation and optical characterization of aerosol particles with controlled mixed composition,” Opt. Express 22(7), 8243–8258 (2014).
    [CrossRef] [PubMed]
  23. J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
    [CrossRef]
  24. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
    [CrossRef]
  25. K. Aslan and C. D. Geddes, Metal-Enhanced Fluorescence: Progress Towards a Unified Plasmon-Fluorophore Description (Wiley, 2010).
  26. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [CrossRef] [PubMed]
  27. N. Liu, B. S. Prall, and V. I. Klimov, “Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions,” J. Am. Chem. Soc. 128(48), 15362–15363 (2006).
    [CrossRef] [PubMed]
  28. H. Nabika and S. Deki, “Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase,” J. Phys. Chem. 107(35), 9161–9164 (2003).
    [CrossRef]
  29. R. L. A. Caires, L. R. Costa, and J. Fernandes, “A close analysis of metal-enhanced fluorescence of tryptophan induced by silver nanoparticles: wavelength emission dependence,” Cent. Eur. J. Chem. 11(1), 111–115 (2013).
    [CrossRef]
  30. Y. H. You and C. P. Zhang, “The photochemistry properties on interaction silver with tryptophan,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 939–946 (2008).
    [CrossRef] [PubMed]
  31. P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
    [CrossRef] [PubMed]
  32. X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles,” ACS Nano 6(10), 9283–9290 (2012).
    [CrossRef] [PubMed]
  33. M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers,” Nano Lett. 11(8), 3341–3345 (2011).
    [CrossRef] [PubMed]
  34. T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
    [CrossRef] [PubMed]
  35. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
    [CrossRef] [PubMed]
  36. E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12(8), 4260–4264 (2012).
    [CrossRef] [PubMed]
  37. S. Chandra, M. Kennedy, J. Doran, S. J. McCormack, and A. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energy Mater. Sol. Cells 11(030), 385–390 (2011).
  38. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
    [CrossRef] [PubMed]
  39. Y. Zhang, R. Zhang, Q. Wang, Z. Zhang, H. Zhu, J. Liu, F. Song, S. Lin, and E. Y. Pun, “Fluorescence enhancement of quantum emitters with different energy systems near a single spherical metal nanoparticle,” Opt. Express 18(5), 4316–4328 (2010).
    [CrossRef] [PubMed]
  40. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
    [CrossRef] [PubMed]
  41. M. Hart, H. B. Lin, and J. D. Eversole, “Electrospray coating of aerosols for labeling and identification,” Patent US2007(005964), A1 (2007).

2014 (1)

2013 (2)

M. A. Matoian, R. Sweetman, E. C. Hall, S. Albanese, and W. B. Euler, “Light trapping to amplify metal enhanced fluorescence with application for sensing TNT,” J. Fluoresc. 23(5), 877–880 (2013).
[CrossRef] [PubMed]

R. L. A. Caires, L. R. Costa, and J. Fernandes, “A close analysis of metal-enhanced fluorescence of tryptophan induced by silver nanoparticles: wavelength emission dependence,” Cent. Eur. J. Chem. 11(1), 111–115 (2013).
[CrossRef]

2012 (3)

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles,” ACS Nano 6(10), 9283–9290 (2012).
[CrossRef] [PubMed]

E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12(8), 4260–4264 (2012).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, and M. Coleman, “Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra,” Opt. Express 20(5), 5325–5334 (2012).
[CrossRef] [PubMed]

2011 (4)

S. Chandra, M. Kennedy, J. Doran, S. J. McCormack, and A. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energy Mater. Sol. Cells 11(030), 385–390 (2011).

M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers,” Nano Lett. 11(8), 3341–3345 (2011).
[CrossRef] [PubMed]

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[CrossRef] [PubMed]

A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
[CrossRef] [PubMed]

2010 (3)

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. 41(12), 1632–1637 (2010).
[CrossRef]

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Y. Zhang, R. Zhang, Q. Wang, Z. Zhang, H. Zhu, J. Liu, F. Song, S. Lin, and E. Y. Pun, “Fluorescence enhancement of quantum emitters with different energy systems near a single spherical metal nanoparticle,” Opt. Express 18(5), 4316–4328 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (4)

Y. H. You and C. P. Zhang, “The photochemistry properties on interaction silver with tryptophan,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 939–946 (2008).
[CrossRef] [PubMed]

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

K. Ray, M. H. Chowdhury, H. Szmacinski, and J. R. Lakowicz, “Metal-enhanced intrinsic fluorescence of proteins on silver nanostructured surfaces towards label-free detection,” J. Phys. Chem. C. Nanomater. Interfaces 112(46), 17957–17963 (2008).

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[CrossRef] [PubMed]

2007 (3)

A. Sengupta, N. Brar, and E. J. Davis, “Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy,” J. Colloid Interface Sci. 309(1), 36–43 (2007).
[CrossRef] [PubMed]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

2006 (2)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

N. Liu, B. S. Prall, and V. I. Klimov, “Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions,” J. Am. Chem. Soc. 128(48), 15362–15363 (2006).
[CrossRef] [PubMed]

2005 (1)

X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005).
[CrossRef] [PubMed]

2004 (2)

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2004).

V. Sivaprakasam, A. Huston, C. Scotto, and J. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12(19), 4457–4466 (2004).
[CrossRef] [PubMed]

2003 (2)

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

H. Nabika and S. Deki, “Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase,” J. Phys. Chem. 107(35), 9161–9164 (2003).
[CrossRef]

2000 (1)

1999 (1)

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

1998 (2)

R. Vehring, C. L. Aardahl, G. Schweiger, and E. J. Davis, “The characterization of fine particles originating from an uncharged aerosol: size dependence and detection limits for Raman analysis,” J. Aerosol Sci. 29(9), 1045–1061 (1998).
[CrossRef]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

1997 (1)

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

1996 (1)

C. L. Aardahl, W. R. Foss, and E. J. Davis, “Elastic and inelastic light scattering from distilling microdroplets for thermodynamic studies,” Ind. Eng. Chem. Res. 35(9), 2834–2841 (1996).
[CrossRef]

1991 (1)

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[CrossRef]

1990 (1)

G. Schweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol Sci. 21(4), 483–509 (1990).
[CrossRef]

1988 (1)

Aardahl, C. L.

R. Vehring, C. L. Aardahl, G. Schweiger, and E. J. Davis, “The characterization of fine particles originating from an uncharged aerosol: size dependence and detection limits for Raman analysis,” J. Aerosol Sci. 29(9), 1045–1061 (1998).
[CrossRef]

C. L. Aardahl, W. R. Foss, and E. J. Davis, “Elastic and inelastic light scattering from distilling microdroplets for thermodynamic studies,” Ind. Eng. Chem. Res. 35(9), 2834–2841 (1996).
[CrossRef]

Adam, P. M.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Albanese, S.

M. A. Matoian, R. Sweetman, E. C. Hall, S. Albanese, and W. B. Euler, “Light trapping to amplify metal enhanced fluorescence with application for sensing TNT,” J. Fluoresc. 23(5), 877–880 (2013).
[CrossRef] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Bar-Joseph, I.

E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12(8), 4260–4264 (2012).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

Barton, J. E.

Bharadwaj, P.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Bradley, A. L.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles,” ACS Nano 6(10), 9283–9290 (2012).
[CrossRef] [PubMed]

M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers,” Nano Lett. 11(8), 3341–3345 (2011).
[CrossRef] [PubMed]

Brar, N.

A. Sengupta, N. Brar, and E. J. Davis, “Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy,” J. Colloid Interface Sci. 309(1), 36–43 (2007).
[CrossRef] [PubMed]

Bryant, G. W.

E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12(8), 4260–4264 (2012).
[CrossRef] [PubMed]

Caires, R. L. A.

R. L. A. Caires, L. R. Costa, and J. Fernandes, “A close analysis of metal-enhanced fluorescence of tryptophan induced by silver nanoparticles: wavelength emission dependence,” Cent. Eur. J. Chem. 11(1), 111–115 (2013).
[CrossRef]

Chandra, S.

S. Chandra, M. Kennedy, J. Doran, S. J. McCormack, and A. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energy Mater. Sol. Cells 11(030), 385–390 (2011).

Chang, R. K.

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

Chatten, A.

S. Chandra, M. Kennedy, J. Doran, S. J. McCormack, and A. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energy Mater. Sol. Cells 11(030), 385–390 (2011).

Chowdhury, M.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Chowdhury, M. H.

K. Ray, M. H. Chowdhury, H. Szmacinski, and J. R. Lakowicz, “Metal-enhanced intrinsic fluorescence of proteins on silver nanostructured surfaces towards label-free detection,” J. Phys. Chem. C. Nanomater. Interfaces 112(46), 17957–17963 (2008).

Christesen, S.

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. 41(12), 1632–1637 (2010).
[CrossRef]

Christesen, S. D.

Clark, J. M.

Cohen-Hoshen, E.

E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12(8), 4260–4264 (2012).
[CrossRef] [PubMed]

Coleman, M.

Costa, L. R.

R. L. A. Caires, L. R. Costa, and J. Fernandes, “A close analysis of metal-enhanced fluorescence of tryptophan induced by silver nanoparticles: wavelength emission dependence,” Cent. Eur. J. Chem. 11(1), 111–115 (2013).
[CrossRef]

Creighton, J. A.

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[CrossRef]

Davis, E. J.

A. Sengupta, N. Brar, and E. J. Davis, “Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy,” J. Colloid Interface Sci. 309(1), 36–43 (2007).
[CrossRef] [PubMed]

R. Vehring, C. L. Aardahl, G. Schweiger, and E. J. Davis, “The characterization of fine particles originating from an uncharged aerosol: size dependence and detection limits for Raman analysis,” J. Aerosol Sci. 29(9), 1045–1061 (1998).
[CrossRef]

C. L. Aardahl, W. R. Foss, and E. J. Davis, “Elastic and inelastic light scattering from distilling microdroplets for thermodynamic studies,” Ind. Eng. Chem. Res. 35(9), 2834–2841 (1996).
[CrossRef]

Deki, S.

H. Nabika and S. Deki, “Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase,” J. Phys. Chem. 107(35), 9161–9164 (2003).
[CrossRef]

Demir, H. V.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[CrossRef] [PubMed]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[CrossRef] [PubMed]

Doran, J.

S. Chandra, M. Kennedy, J. Doran, S. J. McCormack, and A. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energy Mater. Sol. Cells 11(030), 385–390 (2011).

Eadon, D. G.

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[CrossRef]

Emge, D.

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. 41(12), 1632–1637 (2010).
[CrossRef]

Euler, W. B.

M. A. Matoian, R. Sweetman, E. C. Hall, S. Albanese, and W. B. Euler, “Light trapping to amplify metal enhanced fluorescence with application for sensing TNT,” J. Fluoresc. 23(5), 877–880 (2013).
[CrossRef] [PubMed]

Eversole, J.

Eversole, J. D.

Eychmüller, A.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[CrossRef] [PubMed]

Fernandes, J.

R. L. A. Caires, L. R. Costa, and J. Fernandes, “A close analysis of metal-enhanced fluorescence of tryptophan induced by silver nanoparticles: wavelength emission dependence,” Cent. Eur. J. Chem. 11(1), 111–115 (2013).
[CrossRef]

Foss, W. R.

C. L. Aardahl, W. R. Foss, and E. J. Davis, “Elastic and inelastic light scattering from distilling microdroplets for thermodynamic studies,” Ind. Eng. Chem. Res. 35(9), 2834–2841 (1996).
[CrossRef]

Fu, Y.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Gaponenko, S. V.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[CrossRef] [PubMed]

Gaponik, N.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles,” ACS Nano 6(10), 9283–9290 (2012).
[CrossRef] [PubMed]

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[CrossRef] [PubMed]

M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers,” Nano Lett. 11(8), 3341–3345 (2011).
[CrossRef] [PubMed]

Gerard, V. A.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles,” ACS Nano 6(10), 9283–9290 (2012).
[CrossRef] [PubMed]

M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers,” Nano Lett. 11(8), 3341–3345 (2011).
[CrossRef] [PubMed]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Guicheteau, J.

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. 41(12), 1632–1637 (2010).
[CrossRef]

Gun’ko, Y. K.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles,” ACS Nano 6(10), 9283–9290 (2012).
[CrossRef] [PubMed]

M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers,” Nano Lett. 11(8), 3341–3345 (2011).
[CrossRef] [PubMed]

Hairston, P. P.

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Hall, E. C.

M. A. Matoian, R. Sweetman, E. C. Hall, S. Albanese, and W. B. Euler, “Light trapping to amplify metal enhanced fluorescence with application for sensing TNT,” J. Fluoresc. 23(5), 877–880 (2013).
[CrossRef] [PubMed]

Halverson, J.

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

Hartings, J.

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

Hill, S. C.

Y. L. Pan, S. C. Hill, and M. Coleman, “Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra,” Opt. Express 20(5), 5325–5334 (2012).
[CrossRef] [PubMed]

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

Hirst, E.

Ho, J.

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

Huston, A.

Huston, A. L.

Jaffiol, R.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Jeys, T. H.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Kaye, P. H.

Keller, D.

Kennedy, M.

S. Chandra, M. Kennedy, J. Doran, S. J. McCormack, and A. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energy Mater. Sol. Cells 11(030), 385–390 (2011).

Klimov, V. I.

N. Liu, B. S. Prall, and V. I. Klimov, “Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions,” J. Am. Chem. Soc. 128(48), 15362–15363 (2006).
[CrossRef] [PubMed]

Lakowicz, J. R.

K. Ray, M. H. Chowdhury, H. Szmacinski, and J. R. Lakowicz, “Metal-enhanced intrinsic fluorescence of proteins on silver nanostructured surfaces towards label-free detection,” J. Phys. Chem. C. Nanomater. Interfaces 112(46), 17957–17963 (2008).

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Lesnyak, V.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles,” ACS Nano 6(10), 9283–9290 (2012).
[CrossRef] [PubMed]

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[CrossRef] [PubMed]

M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers,” Nano Lett. 11(8), 3341–3345 (2011).
[CrossRef] [PubMed]

Lin, S.

Liu, J.

Liu, N.

N. Liu, B. S. Prall, and V. I. Klimov, “Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions,” J. Am. Chem. Soc. 128(48), 15362–15363 (2006).
[CrossRef] [PubMed]

Lunz, M.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles,” ACS Nano 6(10), 9283–9290 (2012).
[CrossRef] [PubMed]

M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers,” Nano Lett. 11(8), 3341–3345 (2011).
[CrossRef] [PubMed]

Lyandres, O.

X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005).
[CrossRef] [PubMed]

Marocico, C. A.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles,” ACS Nano 6(10), 9283–9290 (2012).
[CrossRef] [PubMed]

März, A.

A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
[CrossRef] [PubMed]

Matoian, M. A.

M. A. Matoian, R. Sweetman, E. C. Hall, S. Albanese, and W. B. Euler, “Light trapping to amplify metal enhanced fluorescence with application for sensing TNT,” J. Fluoresc. 23(5), 877–880 (2013).
[CrossRef] [PubMed]

McCormack, S. J.

S. Chandra, M. Kennedy, J. Doran, S. J. McCormack, and A. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energy Mater. Sol. Cells 11(030), 385–390 (2011).

McGinn, J.

Moskovits, M.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2004).

Mutlugun, E.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[CrossRef] [PubMed]

Nabika, H.

H. Nabika and S. Deki, “Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase,” J. Phys. Chem. 107(35), 9161–9164 (2003).
[CrossRef]

Newbury, N. R.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

Nizamoglu, S.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[CrossRef] [PubMed]

Novotny, L.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Nowaczyk, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Ozel, I. O.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[CrossRef] [PubMed]

Ozel, T.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[CrossRef] [PubMed]

Pan, Y. L.

Y. L. Pan, S. C. Hill, and M. Coleman, “Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra,” Opt. Express 20(5), 5325–5334 (2012).
[CrossRef] [PubMed]

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

Pinkas, I.

E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12(8), 4260–4264 (2012).
[CrossRef] [PubMed]

Pinnick, R. G.

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

Plain, J.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Pletcher, T.

Popp, J.

A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
[CrossRef] [PubMed]

Prall, B. S.

N. Liu, B. S. Prall, and V. I. Klimov, “Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions,” J. Am. Chem. Soc. 128(48), 15362–15363 (2006).
[CrossRef] [PubMed]

Primmerman, C. A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

Pun, E. Y.

Quant, F. R.

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

Ray, K.

K. Ray, M. H. Chowdhury, H. Szmacinski, and J. R. Lakowicz, “Metal-enhanced intrinsic fluorescence of proteins on silver nanostructured surfaces towards label-free detection,” J. Phys. Chem. C. Nanomater. Interfaces 112(46), 17957–17963 (2008).

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Reyes, F. L.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

Rogach, A. L.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles,” ACS Nano 6(10), 9283–9290 (2012).
[CrossRef] [PubMed]

M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers,” Nano Lett. 11(8), 3341–3345 (2011).
[CrossRef] [PubMed]

Rösch, P.

A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
[CrossRef] [PubMed]

Rowe, G. S.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

Royer, P.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Samarskaya, O.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[CrossRef] [PubMed]

Sanchez, A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

Schumacher, W.

A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
[CrossRef] [PubMed]

Schweiger, G.

R. Vehring, C. L. Aardahl, G. Schweiger, and E. J. Davis, “The characterization of fine particles originating from an uncharged aerosol: size dependence and detection limits for Raman analysis,” J. Aerosol Sci. 29(9), 1045–1061 (1998).
[CrossRef]

G. Schweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol Sci. 21(4), 483–509 (1990).
[CrossRef]

Scotto, C.

Sefunc, M. A.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[CrossRef] [PubMed]

Sengupta, A.

A. Sengupta, N. Brar, and E. J. Davis, “Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy,” J. Colloid Interface Sci. 309(1), 36–43 (2007).
[CrossRef] [PubMed]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[CrossRef] [PubMed]

Sivaprakasam, V.

Song, F.

Sperling, J.

E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12(8), 4260–4264 (2012).
[CrossRef] [PubMed]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[CrossRef] [PubMed]

Susha, A. S.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles,” ACS Nano 6(10), 9283–9290 (2012).
[CrossRef] [PubMed]

M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers,” Nano Lett. 11(8), 3341–3345 (2011).
[CrossRef] [PubMed]

Sweetman, R.

M. A. Matoian, R. Sweetman, E. C. Hall, S. Albanese, and W. B. Euler, “Light trapping to amplify metal enhanced fluorescence with application for sensing TNT,” J. Fluoresc. 23(5), 877–880 (2013).
[CrossRef] [PubMed]

Szmacinski, H.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

K. Ray, M. H. Chowdhury, H. Szmacinski, and J. R. Lakowicz, “Metal-enhanced intrinsic fluorescence of proteins on silver nanostructured surfaces towards label-free detection,” J. Phys. Chem. C. Nanomater. Interfaces 112(46), 17957–17963 (2008).

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Tripathi, A.

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. 41(12), 1632–1637 (2010).
[CrossRef]

Tucker, J. E.

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[CrossRef] [PubMed]

X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005).
[CrossRef] [PubMed]

Vehring, R.

R. Vehring, C. L. Aardahl, G. Schweiger, and E. J. Davis, “The characterization of fine particles originating from an uncharged aerosol: size dependence and detection limits for Raman analysis,” J. Aerosol Sci. 29(9), 1045–1061 (1998).
[CrossRef]

Vial, A.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Viste, P.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Walter, A.

A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
[CrossRef] [PubMed]

Wang, Q.

You, Y. H.

Y. H. You and C. P. Zhang, “The photochemistry properties on interaction silver with tryptophan,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 939–946 (2008).
[CrossRef] [PubMed]

Young, M. A.

X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005).
[CrossRef] [PubMed]

Zhang, C. P.

Y. H. You and C. P. Zhang, “The photochemistry properties on interaction silver with tryptophan,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 939–946 (2008).
[CrossRef] [PubMed]

Zhang, J.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Zhang, R.

Zhang, X.

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles,” ACS Nano 6(10), 9283–9290 (2012).
[CrossRef] [PubMed]

X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Zhang, Z.

Zhu, H.

ACS Nano (3)

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles,” ACS Nano 6(10), 9283–9290 (2012).
[CrossRef] [PubMed]

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[CrossRef] [PubMed]

Aerosol Sci. Technol. (1)

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003).
[CrossRef]

Analyst (1)

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Annu. Rev. Anal. Chem. (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Cent. Eur. J. Chem. (1)

R. L. A. Caires, L. R. Costa, and J. Fernandes, “A close analysis of metal-enhanced fluorescence of tryptophan induced by silver nanoparticles: wavelength emission dependence,” Cent. Eur. J. Chem. 11(1), 111–115 (2013).
[CrossRef]

Field Anal. Chem. Technol. (1)

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

Ind. Eng. Chem. Res. (1)

C. L. Aardahl, W. R. Foss, and E. J. Davis, “Elastic and inelastic light scattering from distilling microdroplets for thermodynamic studies,” Ind. Eng. Chem. Res. 35(9), 2834–2841 (1996).
[CrossRef]

J. Aerosol Sci. (3)

G. Schweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol Sci. 21(4), 483–509 (1990).
[CrossRef]

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

R. Vehring, C. L. Aardahl, G. Schweiger, and E. J. Davis, “The characterization of fine particles originating from an uncharged aerosol: size dependence and detection limits for Raman analysis,” J. Aerosol Sci. 29(9), 1045–1061 (1998).
[CrossRef]

J. Am. Chem. Soc. (2)

X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005).
[CrossRef] [PubMed]

N. Liu, B. S. Prall, and V. I. Klimov, “Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions,” J. Am. Chem. Soc. 128(48), 15362–15363 (2006).
[CrossRef] [PubMed]

J. Chem. Soc., Faraday Trans. (1)

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[CrossRef]

J. Colloid Interface Sci. (1)

A. Sengupta, N. Brar, and E. J. Davis, “Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy,” J. Colloid Interface Sci. 309(1), 36–43 (2007).
[CrossRef] [PubMed]

J. Fluoresc. (1)

M. A. Matoian, R. Sweetman, E. C. Hall, S. Albanese, and W. B. Euler, “Light trapping to amplify metal enhanced fluorescence with application for sensing TNT,” J. Fluoresc. 23(5), 877–880 (2013).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

J. Phys. Chem. (1)

H. Nabika and S. Deki, “Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase,” J. Phys. Chem. 107(35), 9161–9164 (2003).
[CrossRef]

J. Phys. Chem. C. Nanomater. Interfaces (1)

K. Ray, M. H. Chowdhury, H. Szmacinski, and J. R. Lakowicz, “Metal-enhanced intrinsic fluorescence of proteins on silver nanostructured surfaces towards label-free detection,” J. Phys. Chem. C. Nanomater. Interfaces 112(46), 17957–17963 (2008).

J. Raman Spectrosc. (2)

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2004).

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. 41(12), 1632–1637 (2010).
[CrossRef]

Lab Chip (1)

A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
[CrossRef] [PubMed]

Nano Lett. (3)

M. Lunz, V. A. Gerard, Y. K. Gun’ko, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, “Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers,” Nano Lett. 11(8), 3341–3345 (2011).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

E. Cohen-Hoshen, G. W. Bryant, I. Pinkas, J. Sperling, and I. Bar-Joseph, “Exciton-plasmon interactions in quantum dot-gold nanoparticle structures,” Nano Lett. 12(8), 4260–4264 (2012).
[CrossRef] [PubMed]

Opt. Express (5)

Phys. Rev. Lett. (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

S. Chandra, M. Kennedy, J. Doran, S. J. McCormack, and A. Chatten, “Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction,” Sol. Energy Mater. Sol. Cells 11(030), 385–390 (2011).

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

Y. H. You and C. P. Zhang, “The photochemistry properties on interaction silver with tryptophan,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 69(3), 939–946 (2008).
[CrossRef] [PubMed]

Other (4)

M. Hart, H. B. Lin, and J. D. Eversole, “Electrospray coating of aerosols for labeling and identification,” Patent US2007(005964), A1 (2007).

K. Aslan and C. D. Geddes, Metal-Enhanced Fluorescence: Progress Towards a Unified Plasmon-Fluorophore Description (Wiley, 2010).

S. V. Konev, Fluorescence and Phosphorescence of Proteins and Nucleic Acids (Plenum, 1967).

T. D. Brock, M. T. Madigan, J. M. Martinko, and J. Parker, Biology of Microorganisms, 7th ed. (Prentice Hall, 1994), Chap. 19.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SEM images of (a) 2 µm PSL particle coated with 2 × 104, 10 nm gold MNPs on the surface resulting in a 25% surface coverage and (b) 2.5 µm tryptophan particle with 3 × 104, 10 nm gold MNPs embedded throughout the particle resulting in a 0.2% volume fraction coverage.

Fig. 2
Fig. 2

Total absolute fluorescence intensities from aerosol particles of tryptophan, ovalbumin and dye-doped PSLs are plotted for excitations at 266 nm and 355 nm. Samples were measured with, and without, the addition of approximately 900, 10 nm gold MNPs. Each point on the plot corresponds to the fluorescence emission from a single aerosol particle. The 785 nm elastic scattering signal, which is indicative of the size of the aerosols, is shown in the inset illustrating that the addition of MNPs did not significantly alter the size distribution of the resultant aerosols.

Fig. 3
Fig. 3

Absolute fluorescence emission is shown for the three target aerosols; tryptophan, ovalbumin and 2 µm dye-doped PSL, measured in (a) four bands using 266 nm excitation and (b) three bands using 355 nm excitation. The measurements were performed on populations of approximately 10,000 aerosols for each sample, with the mean and the standard deviations shown.

Fig. 4
Fig. 4

SEM images of 2 μm PSLs with addition of 0, 3x103 and 10x103, 10 nm gold MNPs on the surface of the particle corresponding to surface coverage of 0, 4% and 13%. The SEM images confirm the deposition of higher density of MNPs coating the PSL as the concentration of the MNPs was increased in the solution to generate the droplets. The deposition also shows agglomeration of the MNPs.

Fig. 5
Fig. 5

Scaled fluorescence intensity of tryptophan, ovalbumin and 2 µm dye-doped PSL particles are plotted as a function of concentration of the addition of gold MNPs. (a) The fluorescence signals measured in the four emission bands using 266 nm laser excitation has been summed and normalized to the fluorescence measured in the absence of MNPs, and similarly (b) the sum of the fluorescence in the three emission bands using 355 nm laser excitation has been summed and normalized to the fluorescence measured in the absence of MNPs

Fig. 6
Fig. 6

Scaled fluorescence intensities are plotted as a function of concentration of the addition of gold MNPs. Plots of fluorescence emission measured using 266 nm excitation are shown in (a), (b) and (c), and those with 355 nm excitation are shown in (d), (e) and (f) for tryptophan, ovalbumin and 2 µm 450 nm dye-doped PSL aerosols respectively. The fluorescence measurements have been normalized to the emission measured for the aerosols without the addition of MNPs in the respective bands.

Metrics