Abstract

A six section widely tunable laser based on slots etched into the waveguide is presented. This laser is re-growth free which makes it suitable for photonics integration. To improve the laser performance, the front and the back facets are anti- reflection (AR) coated and the laser is integrated with a semiconductor optical amplifier. A tuning range of 55nm covering 12 supermodes with side mode suppression ratio (SMSR) >30dB is reported for the fabricated device using the Vernier tuning effect. This laser platform requires very simple fabrication compared with more complex superstructure gratings.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Phelan, M. Lynch, J. F. Donegan, and V. Weldon, “Simultaneous multispecies gas sensing by use of a sampled grating distributed Bragg reflector and modulated grating Y laser diode,” Appl. Opt. 44(27), 5824–5831 (2005).
    [CrossRef] [PubMed]
  2. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
    [CrossRef]
  3. Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29(6), 1817–1823 (1993).
    [CrossRef]
  4. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
    [CrossRef]
  5. H. Ishii, K. Kasaya, and H. Oohashi, “Narrow spectral linewidth operation (<160kHz) in widely tunable distributed feedback laser array,” Electron. Lett. 46(10), 714–715 (2010).
    [CrossRef]
  6. W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single mode lasers,” IEEE Photon. Technol. Lett. 24(8), 634–636 (2012).
    [CrossRef]
  7. D. Byrne, Q. Lu, W-H. Guo, J. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J-P Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” in Conference of Lasers and Electro-Optics, (Optical Society of America, 2008), paper JThA28.
  8. Q. Lu, W.-H. Guo, M. Nawrocka, A. Abdullaev, C. Daunt, J. O’Callaghan, M. Lynch, V. Weldon, F. Peters, and J. F. Donegan, “Single mode lasers based on slots suitable for photonic integration,” Opt. Express 19(26), B140–B145 (2011).
    [CrossRef] [PubMed]
  9. D. Byrne, J.-P. Engelstaedter, W.-H. Guo, Q. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonics integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
    [CrossRef]
  10. Q. Y. Lu, W.-H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single- mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
    [CrossRef]
  11. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure- grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32(3), 433–441 (1996).
    [CrossRef]
  12. J. Buus, M.-C. Amman, and D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources (Wiley-Interscience, 2005).
  13. B. Mason, G. A. Fish, J. Barton, L. A. Coldren, and S. P. DenBaars, “Characteristics of sampled grating DBR lasers with integrated semiconductor optical amplifiers and electroabsorption amplifiers,” In Proc. Conf. Optical Fiber Commun. (2010).
  14. S. Oku, S. Kondo, Y. Noguchi, T. Hirono, M. Nakao, and T. Tamamura, “Surface- grating Bragg reflector lasers using deeply etched groove formed by reactive beam etching,” in Proc. 1998 Int. Conf. Indium Phosphide Relat. Mater. 299–302.
  15. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
    [CrossRef]
  16. S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow Linewidth DFB Lasers Emitting Near a Wavelength of 1064nm,” J. Lightwave Technol. 28(17), 2611–2616 (2010).
    [CrossRef]
  17. D. Byrne, W. H. Guo, R. Phelan, Q. Y. Lu, J. F. Donegan, and B. Corbett, “Measurement of linewidth enhancement factorfor InGaAlAs laser diode by Fourier series expansion method,” Electron. Lett. 43(21), 1145–1146 (2007).
    [CrossRef]

2012 (1)

W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single mode lasers,” IEEE Photon. Technol. Lett. 24(8), 634–636 (2012).
[CrossRef]

2011 (1)

2010 (2)

H. Ishii, K. Kasaya, and H. Oohashi, “Narrow spectral linewidth operation (<160kHz) in widely tunable distributed feedback laser array,” Electron. Lett. 46(10), 714–715 (2010).
[CrossRef]

S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow Linewidth DFB Lasers Emitting Near a Wavelength of 1064nm,” J. Lightwave Technol. 28(17), 2611–2616 (2010).
[CrossRef]

2009 (1)

D. Byrne, J.-P. Engelstaedter, W.-H. Guo, Q. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonics integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

2007 (1)

D. Byrne, W. H. Guo, R. Phelan, Q. Y. Lu, J. F. Donegan, and B. Corbett, “Measurement of linewidth enhancement factorfor InGaAlAs laser diode by Fourier series expansion method,” Electron. Lett. 43(21), 1145–1146 (2007).
[CrossRef]

2006 (1)

Q. Y. Lu, W.-H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single- mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

2005 (2)

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

R. Phelan, M. Lynch, J. F. Donegan, and V. Weldon, “Simultaneous multispecies gas sensing by use of a sampled grating distributed Bragg reflector and modulated grating Y laser diode,” Appl. Opt. 44(27), 5824–5831 (2005).
[CrossRef] [PubMed]

2004 (1)

1996 (1)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure- grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32(3), 433–441 (1996).
[CrossRef]

1993 (1)

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29(6), 1817–1823 (1993).
[CrossRef]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

Abdullaev, A.

W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single mode lasers,” IEEE Photon. Technol. Lett. 24(8), 634–636 (2012).
[CrossRef]

Q. Lu, W.-H. Guo, M. Nawrocka, A. Abdullaev, C. Daunt, J. O’Callaghan, M. Lynch, V. Weldon, F. Peters, and J. F. Donegan, “Single mode lasers based on slots suitable for photonic integration,” Opt. Express 19(26), B140–B145 (2011).
[CrossRef] [PubMed]

Akulova, Y.

Barton, E.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Barton, J.

B. Mason, G. A. Fish, J. Barton, L. A. Coldren, and S. P. DenBaars, “Characteristics of sampled grating DBR lasers with integrated semiconductor optical amplifiers and electroabsorption amplifiers,” In Proc. Conf. Optical Fiber Commun. (2010).

Barton, J. S.

Brox, O.

Busico, G.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Byrne, D.

D. Byrne, J.-P. Engelstaedter, W.-H. Guo, Q. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonics integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

D. Byrne, W. H. Guo, R. Phelan, Q. Y. Lu, J. F. Donegan, and B. Corbett, “Measurement of linewidth enhancement factorfor InGaAlAs laser diode by Fourier series expansion method,” Electron. Lett. 43(21), 1145–1146 (2007).
[CrossRef]

Q. Y. Lu, W.-H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single- mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

Carter, A. C.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Coldren, C. W.

Coldren, L. A.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
[CrossRef]

B. Mason, G. A. Fish, J. Barton, L. A. Coldren, and S. P. DenBaars, “Characteristics of sampled grating DBR lasers with integrated semiconductor optical amplifiers and electroabsorption amplifiers,” In Proc. Conf. Optical Fiber Commun. (2010).

Corbett, B.

D. Byrne, J.-P. Engelstaedter, W.-H. Guo, Q. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonics integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

D. Byrne, W. H. Guo, R. Phelan, Q. Y. Lu, J. F. Donegan, and B. Corbett, “Measurement of linewidth enhancement factorfor InGaAlAs laser diode by Fourier series expansion method,” Electron. Lett. 43(21), 1145–1146 (2007).
[CrossRef]

Q. Y. Lu, W.-H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single- mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

Daunt, C.

DenBaars, S. P.

B. Mason, G. A. Fish, J. Barton, L. A. Coldren, and S. P. DenBaars, “Characteristics of sampled grating DBR lasers with integrated semiconductor optical amplifiers and electroabsorption amplifiers,” In Proc. Conf. Optical Fiber Commun. (2010).

Donegan, J. F.

W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single mode lasers,” IEEE Photon. Technol. Lett. 24(8), 634–636 (2012).
[CrossRef]

Q. Lu, W.-H. Guo, M. Nawrocka, A. Abdullaev, C. Daunt, J. O’Callaghan, M. Lynch, V. Weldon, F. Peters, and J. F. Donegan, “Single mode lasers based on slots suitable for photonic integration,” Opt. Express 19(26), B140–B145 (2011).
[CrossRef] [PubMed]

D. Byrne, J.-P. Engelstaedter, W.-H. Guo, Q. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonics integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

D. Byrne, W. H. Guo, R. Phelan, Q. Y. Lu, J. F. Donegan, and B. Corbett, “Measurement of linewidth enhancement factorfor InGaAlAs laser diode by Fourier series expansion method,” Electron. Lett. 43(21), 1145–1146 (2007).
[CrossRef]

Q. Y. Lu, W.-H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single- mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

R. Phelan, M. Lynch, J. F. Donegan, and V. Weldon, “Simultaneous multispecies gas sensing by use of a sampled grating distributed Bragg reflector and modulated grating Y laser diode,” Appl. Opt. 44(27), 5824–5831 (2005).
[CrossRef] [PubMed]

Duck, J. P.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Engelstaedter, J.-P.

D. Byrne, J.-P. Engelstaedter, W.-H. Guo, Q. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonics integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

Erbert, G.

Fish, G. A.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
[CrossRef]

B. Mason, G. A. Fish, J. Barton, L. A. Coldren, and S. P. DenBaars, “Characteristics of sampled grating DBR lasers with integrated semiconductor optical amplifiers and electroabsorption amplifiers,” In Proc. Conf. Optical Fiber Commun. (2010).

Guo, W. H.

D. Byrne, W. H. Guo, R. Phelan, Q. Y. Lu, J. F. Donegan, and B. Corbett, “Measurement of linewidth enhancement factorfor InGaAlAs laser diode by Fourier series expansion method,” Electron. Lett. 43(21), 1145–1146 (2007).
[CrossRef]

Guo, W.-H.

W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single mode lasers,” IEEE Photon. Technol. Lett. 24(8), 634–636 (2012).
[CrossRef]

Q. Lu, W.-H. Guo, M. Nawrocka, A. Abdullaev, C. Daunt, J. O’Callaghan, M. Lynch, V. Weldon, F. Peters, and J. F. Donegan, “Single mode lasers based on slots suitable for photonic integration,” Opt. Express 19(26), B140–B145 (2011).
[CrossRef] [PubMed]

D. Byrne, J.-P. Engelstaedter, W.-H. Guo, Q. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonics integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

Q. Y. Lu, W.-H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single- mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

Ishii, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Narrow spectral linewidth operation (<160kHz) in widely tunable distributed feedback laser array,” Electron. Lett. 46(10), 714–715 (2010).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure- grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32(3), 433–441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29(6), 1817–1823 (1993).
[CrossRef]

Johansson, L.

Kano, F.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure- grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32(3), 433–441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29(6), 1817–1823 (1993).
[CrossRef]

Kasaya, K.

H. Ishii, K. Kasaya, and H. Oohashi, “Narrow spectral linewidth operation (<160kHz) in widely tunable distributed feedback laser array,” Electron. Lett. 46(10), 714–715 (2010).
[CrossRef]

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

Kondo, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure- grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32(3), 433–441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29(6), 1817–1823 (1993).
[CrossRef]

Lambkin, P.

Q. Y. Lu, W.-H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single- mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

Lu, Q.

W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single mode lasers,” IEEE Photon. Technol. Lett. 24(8), 634–636 (2012).
[CrossRef]

Q. Lu, W.-H. Guo, M. Nawrocka, A. Abdullaev, C. Daunt, J. O’Callaghan, M. Lynch, V. Weldon, F. Peters, and J. F. Donegan, “Single mode lasers based on slots suitable for photonic integration,” Opt. Express 19(26), B140–B145 (2011).
[CrossRef] [PubMed]

D. Byrne, J.-P. Engelstaedter, W.-H. Guo, Q. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonics integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

Lu, Q. Y.

D. Byrne, W. H. Guo, R. Phelan, Q. Y. Lu, J. F. Donegan, and B. Corbett, “Measurement of linewidth enhancement factorfor InGaAlAs laser diode by Fourier series expansion method,” Electron. Lett. 43(21), 1145–1146 (2007).
[CrossRef]

Q. Y. Lu, W.-H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single- mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

Lynch, M.

Mason, B.

B. Mason, G. A. Fish, J. Barton, L. A. Coldren, and S. P. DenBaars, “Characteristics of sampled grating DBR lasers with integrated semiconductor optical amplifiers and electroabsorption amplifiers,” In Proc. Conf. Optical Fiber Commun. (2010).

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

Nawrocka, M.

W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single mode lasers,” IEEE Photon. Technol. Lett. 24(8), 634–636 (2012).
[CrossRef]

Q. Lu, W.-H. Guo, M. Nawrocka, A. Abdullaev, C. Daunt, J. O’Callaghan, M. Lynch, V. Weldon, F. Peters, and J. F. Donegan, “Single mode lasers based on slots suitable for photonic integration,” Opt. Express 19(26), B140–B145 (2011).
[CrossRef] [PubMed]

O’Callaghan, J.

Q. Lu, W.-H. Guo, M. Nawrocka, A. Abdullaev, C. Daunt, J. O’Callaghan, M. Lynch, V. Weldon, F. Peters, and J. F. Donegan, “Single mode lasers based on slots suitable for photonic integration,” Opt. Express 19(26), B140–B145 (2011).
[CrossRef] [PubMed]

D. Byrne, J.-P. Engelstaedter, W.-H. Guo, Q. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonics integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

Oohashi, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Narrow spectral linewidth operation (<160kHz) in widely tunable distributed feedback laser array,” Electron. Lett. 46(10), 714–715 (2010).
[CrossRef]

Peters, F.

Peters, F. H.

D. Byrne, J.-P. Engelstaedter, W.-H. Guo, Q. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonics integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

Phelan, R.

D. Byrne, W. H. Guo, R. Phelan, Q. Y. Lu, J. F. Donegan, and B. Corbett, “Measurement of linewidth enhancement factorfor InGaAlAs laser diode by Fourier series expansion method,” Electron. Lett. 43(21), 1145–1146 (2007).
[CrossRef]

Q. Y. Lu, W.-H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single- mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

R. Phelan, M. Lynch, J. F. Donegan, and V. Weldon, “Simultaneous multispecies gas sensing by use of a sampled grating distributed Bragg reflector and modulated grating Y laser diode,” Appl. Opt. 44(27), 5824–5831 (2005).
[CrossRef] [PubMed]

Ponnampalam, L.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Reid, D. C. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Robbins, D. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Roycroft, B.

D. Byrne, J.-P. Engelstaedter, W.-H. Guo, Q. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonics integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

Schiemangk, M.

Spießberger, S.

Tamamura, T.

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29(6), 1817–1823 (1993).
[CrossRef]

Tanobe, H.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure- grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32(3), 433–441 (1996).
[CrossRef]

Tohmori, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure- grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32(3), 433–441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29(6), 1817–1823 (1993).
[CrossRef]

Wale, M. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Ward, A. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Weldon, V.

Wenzel, H.

Whitbread, N. D.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Wicht, A.

Williams, P. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Yamamoto, M.

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29(6), 1817–1823 (1993).
[CrossRef]

Yoshikuni, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure- grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32(3), 433–441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29(6), 1817–1823 (1993).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (3)

H. Ishii, K. Kasaya, and H. Oohashi, “Narrow spectral linewidth operation (<160kHz) in widely tunable distributed feedback laser array,” Electron. Lett. 46(10), 714–715 (2010).
[CrossRef]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

D. Byrne, W. H. Guo, R. Phelan, Q. Y. Lu, J. F. Donegan, and B. Corbett, “Measurement of linewidth enhancement factorfor InGaAlAs laser diode by Fourier series expansion method,” Electron. Lett. 43(21), 1145–1146 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure- grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32(3), 433–441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29(6), 1817–1823 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

D. Byrne, J.-P. Engelstaedter, W.-H. Guo, Q. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonics integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Q. Y. Lu, W.-H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single- mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable slotted single mode lasers,” IEEE Photon. Technol. Lett. 24(8), 634–636 (2012).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Other (4)

J. Buus, M.-C. Amman, and D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources (Wiley-Interscience, 2005).

B. Mason, G. A. Fish, J. Barton, L. A. Coldren, and S. P. DenBaars, “Characteristics of sampled grating DBR lasers with integrated semiconductor optical amplifiers and electroabsorption amplifiers,” In Proc. Conf. Optical Fiber Commun. (2010).

S. Oku, S. Kondo, Y. Noguchi, T. Hirono, M. Nakao, and T. Tamamura, “Surface- grating Bragg reflector lasers using deeply etched groove formed by reactive beam etching,” in Proc. 1998 Int. Conf. Indium Phosphide Relat. Mater. 299–302.

D. Byrne, Q. Lu, W-H. Guo, J. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J-P Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” in Conference of Lasers and Electro-Optics, (Optical Society of America, 2008), paper JThA28.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

3D schematic structure of the six-section tunable laser based on slots.

Fig. 2
Fig. 2

(a) SMSR versus peak wavelength for the laser with slot period of 70 μm for the front mirror and 76 μm for the back mirror. The currents injected to the front and the back mirror were scanned together between 300 and 50 mA, (b) Output power vs. peak wavelength for the lasers with slot period of 70 μm for the front mirror and 76 μm for the back mirror. The currents injected to the front and the back mirror were scanned between 300 and 50 mA.

Fig. 3
Fig. 3

(a). Wavelength tuning map versus the current injected to the front and back mirrors for the lasers with different slot period of 70 μm for the front mirror and 76 μm for the back mirror, (b) SMSR map versus injected currents into the front and back sections for the lasers with slot period of 70 μm for the front mirror and 76 μm for the back mirror.

Fig. 4
Fig. 4

SMSR versus tuning wavelength for the lasers with slot period of 70 μm for the front mirror and 76 μm for the back mirror.

Fig. 5
Fig. 5

(a) Phase current vs. peak wavelength of 1535nm; (b) Phase current vs. SMSR ; (c) SMSR vs wavelength.

Fig. 6
Fig. 6

SMSR map with phase scan region for the lasers with slot period of 70 μm for the front mirror and 76 μm for the back mirror.

Fig. 7
Fig. 7

Self-heterodyne experimental set-up for linewidth measurements.

Fig. 8
Fig. 8

(a) Example of an electrical spectrum of the tunable laser for a wavelength of 1549.41nm. (b) Linewidth versus the peak wavelength.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δλ= λ 2 2 n g l
n g = n eff λ n eff dλ
γ= t s 2 e gl
Δ λ ' = λ f λ b +1 λ f λ b

Metrics