Abstract

We demonstrate that Surface Plasmon Resonance spectroscopy can be used for the accurate and simultaneous determination of the thickness and refractive index of transparent thin thermally deposited organic films. The experimental approach is based on a two-metal deposition or a two-thickness method. These methods have been applied to an encapsulated sample containing a thin film of commercial tris(8-hydroxyquinoline) (Alq3). The accuracy of the measurement depends on the control of the film deposition process and suggests the use of SPR spectroscopy as inexpensive and valuable metrology tool for small molecule organic thin films.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer-Verlag, 1988)
  2. J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  3. E. Giorgetti, M. Muniz-Miranda, A. Giusti, T. Del Rosso, G. Dellepiane, G. Margheri, S. Sottini, M. Alloisio, and C. Cuniberti, “Spectroscopic investigation on the in situ polymerization of self assembled monolayers of carbazolyldiacetylene CDS9 on silver-coated glass,” Thin Solid Films 495(1-2), 36–39 (2006).
    [CrossRef]
  4. E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
    [CrossRef]
  5. H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5-6), 425–432 (1991).
    [CrossRef]
  6. K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using Surface Plasmon Resonance Spectroscopy,” Opt. Commun. 130(4-6), 260–266 (1996).
    [CrossRef]
  7. R. Georgiadis, K. P. Peterlinz, and A. W. Peterson, “Quantitative measurements and modeling of kinetics in Nucleic Acid Monolayer Film using SPR spectroscopy,” J. Am. Chem. Soc. 122(13), 3166–3173 (2000).
    [CrossRef]
  8. J. S. Yuk and K. S. Ha, “Proteomic applications of surface plasmon resonance biosensors: analysis of protein arrays,” Exp. Mol. Med. 37(1), 1–10 (2005).
    [CrossRef] [PubMed]
  9. H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface Plasmon Resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
    [CrossRef]
  10. H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (John Wiley & Sons Ltd, 2007)
  11. P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
    [CrossRef]
  12. S. P. Subbarao, M. E. Bahlke, and I. Kymissis, “Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices,” IEEE Trans. Electron. Dev. 57(1), 153–156 (2010).
    [CrossRef]
  13. D. A. Ramsey and K. C. Ludema, “The influences of roughness on film thickness measurements by Mueller matrix ellipsometry,” Rev. Sci. Instrum. 65(9), 2874–2881 (1994).
    [CrossRef]
  14. A. M. Kostruba and O. G. Vlokh, “Accuracy of traditional ellipsometry and complex “ellipsometry – transmission photometry” techniques for systems “absorptive film – transparent substrate”,” Proc. SPIE 3094, 266–271 (1997).
    [CrossRef]
  15. B. Johs and C. M. Herzinger, “Quantifying the Accuracy of Ellipsometer Systems,” Phys. Status Solidi 5(5C), 1031–1035 (2008).
    [CrossRef]
  16. P. E. Burrows and S. R. Forrest, “Electroluminescence from trap limited current transport in vacuum deposited organic light emitting devices,” Appl. Phys. Lett. 64(17), 2285–2287 (1994).
    [CrossRef]
  17. N. Hajdukova, M. Prochazka, J. Stepanek, and M. Spirkova, “Chemically reduced and laser-ablated gold nanoparticles immobilized to silanized glass plates: Preparation, characterization and SERS spectral testing,” Colloids Surf. A Physicochem. Eng. Asp. 301(1-3), 264–270 (2007).
    [CrossRef]
  18. S. Cowen and J. R. Sambles, “Resolving the apparent ambiguity in determining the relative permittivity and thickness of a metal film using optical excitation of surface-plasmon polariton,” Opt. Commun. 79(6), 427–430 (1990).
    [CrossRef]
  19. S. Kumar, V. K. Shukla, and A. Tripathi, “Ellipsometric investigations on the light induced effects on tris(8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 477(1-2), 240–243 (2005).
    [CrossRef]
  20. V. K. Shukla and S. Kumar, “Investigations of environmental induced effects on Alq3 thin films by AFM phase imaging,” Appl. Surf. Sci. 253(16), 6848–6853 (2007).
    [CrossRef]
  21. S. Sellner, A. Gerlach, S. Kowarik, F. Schreiber, H. Dosch, S. Meyer, J. Pflaum, and G. Ulbricht, “Comparative Study of the Growth of Sputtered Aluminum Oxide Films on Organic and Inorganic Substrates,” Thin Solid Films 516(18), 6377–6381 (2008).
    [CrossRef]
  22. M. Higo, X. Lu, U. Mazur, and K. W. Hipps, “Preparation of Atomically Smooth Aluminum Films: Characterization by Transmission Electron Microscopy and Atomic Force Microscopy,” Langmuir 13(23), 6176–6182 (1997).
    [CrossRef]
  23. J. Worm, “Winspall 2.20 software,” 2001, http://www.mpip-mainz.mpg.de/ johanns/winspall2.ZIP
  24. H. E. Bruijn, R. P. Kooyman, and J. Greve, “Determination of dielectric permittivity and thickness of a metal layer from a surface plasmon resonance experiment,” Appl. Opt. 29(13), 1974–1978 (1990).
    [CrossRef] [PubMed]
  25. U. Schröder, “Der einfluss dünner metallischer decks chichten auf die dispersion von oberflächenplasmaschwingungen in gold-silber-schichtsystemen,” Surf. Sci. 102(1), 118–130 (1981).
    [CrossRef]
  26. B. G. Tilkens, Y. F. Lion, and Y. L. Renotte, “Uncertainties in the values obtained by surface plasmon resonance,” Opt. Eng. 39(2), 363–373 (2000).
    [CrossRef]
  27. I. Pockrand, “Surface Plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72(3), 577–588 (1978).
    [CrossRef]
  28. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
    [CrossRef]
  29. C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005).
    [CrossRef]
  30. A. B. Djurisic, C. Y. Kwong, W. L. Guo, T. W. Lau, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, and W. K. Chan, “Spectroscopic ellipsometry of the optical functions of tris (8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 416(1-2), 233–241 (2002).
    [CrossRef]
  31. M. M. El-Nahass, A. M. Farid, and A. A. Atta, “Structural and optical properties of Tris(8-hydroxyquinoline) aluminum (III) (Alq3) thermal evaporated thin films,” J. Alloy. Comp. 507(1), 112–119 (2010).
    [CrossRef]
  32. F. F. Muhammad and K. Sulaiman, “Utilizing a simple and reliable method to investigate the optical functions of small molecular organic films – Alq3 and Gaq3 as examples,” Measurement 44(8), 1468–1474 (2011).
    [CrossRef]
  33. R. R. Willey, Practical Monitoring and Control of Optical Thin Films (Willey Optical Consultants, 2007)
  34. A. J. Moulé and K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymers layers,” Appl. Phys. Lett. 91(6), 0619011 (2007).
    [CrossRef]
  35. J. A. E. Wasey and W. L. Barnes, “Efficiency of spontaneous emission from planar microcavities,” J. Mod. Opt. 47(4), 725–741 (2000).
    [CrossRef]
  36. R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
    [CrossRef]
  37. Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
    [CrossRef]

2011 (1)

F. F. Muhammad and K. Sulaiman, “Utilizing a simple and reliable method to investigate the optical functions of small molecular organic films – Alq3 and Gaq3 as examples,” Measurement 44(8), 1468–1474 (2011).
[CrossRef]

2010 (4)

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[CrossRef]

M. M. El-Nahass, A. M. Farid, and A. A. Atta, “Structural and optical properties of Tris(8-hydroxyquinoline) aluminum (III) (Alq3) thermal evaporated thin films,” J. Alloy. Comp. 507(1), 112–119 (2010).
[CrossRef]

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface Plasmon Resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

S. P. Subbarao, M. E. Bahlke, and I. Kymissis, “Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices,” IEEE Trans. Electron. Dev. 57(1), 153–156 (2010).
[CrossRef]

2008 (4)

B. Johs and C. M. Herzinger, “Quantifying the Accuracy of Ellipsometer Systems,” Phys. Status Solidi 5(5C), 1031–1035 (2008).
[CrossRef]

J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[CrossRef]

S. Sellner, A. Gerlach, S. Kowarik, F. Schreiber, H. Dosch, S. Meyer, J. Pflaum, and G. Ulbricht, “Comparative Study of the Growth of Sputtered Aluminum Oxide Films on Organic and Inorganic Substrates,” Thin Solid Films 516(18), 6377–6381 (2008).
[CrossRef]

2007 (4)

V. K. Shukla and S. Kumar, “Investigations of environmental induced effects on Alq3 thin films by AFM phase imaging,” Appl. Surf. Sci. 253(16), 6848–6853 (2007).
[CrossRef]

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[CrossRef]

A. J. Moulé and K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymers layers,” Appl. Phys. Lett. 91(6), 0619011 (2007).
[CrossRef]

N. Hajdukova, M. Prochazka, J. Stepanek, and M. Spirkova, “Chemically reduced and laser-ablated gold nanoparticles immobilized to silanized glass plates: Preparation, characterization and SERS spectral testing,” Colloids Surf. A Physicochem. Eng. Asp. 301(1-3), 264–270 (2007).
[CrossRef]

2006 (1)

E. Giorgetti, M. Muniz-Miranda, A. Giusti, T. Del Rosso, G. Dellepiane, G. Margheri, S. Sottini, M. Alloisio, and C. Cuniberti, “Spectroscopic investigation on the in situ polymerization of self assembled monolayers of carbazolyldiacetylene CDS9 on silver-coated glass,” Thin Solid Films 495(1-2), 36–39 (2006).
[CrossRef]

2005 (3)

J. S. Yuk and K. S. Ha, “Proteomic applications of surface plasmon resonance biosensors: analysis of protein arrays,” Exp. Mol. Med. 37(1), 1–10 (2005).
[CrossRef] [PubMed]

C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005).
[CrossRef]

S. Kumar, V. K. Shukla, and A. Tripathi, “Ellipsometric investigations on the light induced effects on tris(8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 477(1-2), 240–243 (2005).
[CrossRef]

2002 (1)

A. B. Djurisic, C. Y. Kwong, W. L. Guo, T. W. Lau, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, and W. K. Chan, “Spectroscopic ellipsometry of the optical functions of tris (8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 416(1-2), 233–241 (2002).
[CrossRef]

2001 (1)

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[CrossRef]

2000 (3)

R. Georgiadis, K. P. Peterlinz, and A. W. Peterson, “Quantitative measurements and modeling of kinetics in Nucleic Acid Monolayer Film using SPR spectroscopy,” J. Am. Chem. Soc. 122(13), 3166–3173 (2000).
[CrossRef]

B. G. Tilkens, Y. F. Lion, and Y. L. Renotte, “Uncertainties in the values obtained by surface plasmon resonance,” Opt. Eng. 39(2), 363–373 (2000).
[CrossRef]

J. A. E. Wasey and W. L. Barnes, “Efficiency of spontaneous emission from planar microcavities,” J. Mod. Opt. 47(4), 725–741 (2000).
[CrossRef]

1997 (2)

M. Higo, X. Lu, U. Mazur, and K. W. Hipps, “Preparation of Atomically Smooth Aluminum Films: Characterization by Transmission Electron Microscopy and Atomic Force Microscopy,” Langmuir 13(23), 6176–6182 (1997).
[CrossRef]

A. M. Kostruba and O. G. Vlokh, “Accuracy of traditional ellipsometry and complex “ellipsometry – transmission photometry” techniques for systems “absorptive film – transparent substrate”,” Proc. SPIE 3094, 266–271 (1997).
[CrossRef]

1996 (1)

K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using Surface Plasmon Resonance Spectroscopy,” Opt. Commun. 130(4-6), 260–266 (1996).
[CrossRef]

1994 (3)

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[CrossRef]

D. A. Ramsey and K. C. Ludema, “The influences of roughness on film thickness measurements by Mueller matrix ellipsometry,” Rev. Sci. Instrum. 65(9), 2874–2881 (1994).
[CrossRef]

P. E. Burrows and S. R. Forrest, “Electroluminescence from trap limited current transport in vacuum deposited organic light emitting devices,” Appl. Phys. Lett. 64(17), 2285–2287 (1994).
[CrossRef]

1991 (1)

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5-6), 425–432 (1991).
[CrossRef]

1990 (2)

S. Cowen and J. R. Sambles, “Resolving the apparent ambiguity in determining the relative permittivity and thickness of a metal film using optical excitation of surface-plasmon polariton,” Opt. Commun. 79(6), 427–430 (1990).
[CrossRef]

H. E. Bruijn, R. P. Kooyman, and J. Greve, “Determination of dielectric permittivity and thickness of a metal layer from a surface plasmon resonance experiment,” Appl. Opt. 29(13), 1974–1978 (1990).
[CrossRef] [PubMed]

1981 (1)

U. Schröder, “Der einfluss dünner metallischer decks chichten auf die dispersion von oberflächenplasmaschwingungen in gold-silber-schichtsystemen,” Surf. Sci. 102(1), 118–130 (1981).
[CrossRef]

1978 (1)

I. Pockrand, “Surface Plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72(3), 577–588 (1978).
[CrossRef]

Alloisio, M.

E. Giorgetti, M. Muniz-Miranda, A. Giusti, T. Del Rosso, G. Dellepiane, G. Margheri, S. Sottini, M. Alloisio, and C. Cuniberti, “Spectroscopic investigation on the in situ polymerization of self assembled monolayers of carbazolyldiacetylene CDS9 on silver-coated glass,” Thin Solid Films 495(1-2), 36–39 (2006).
[CrossRef]

Altenburg, B. S. F.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5-6), 425–432 (1991).
[CrossRef]

Atta, A. A.

M. M. El-Nahass, A. M. Farid, and A. A. Atta, “Structural and optical properties of Tris(8-hydroxyquinoline) aluminum (III) (Alq3) thermal evaporated thin films,” J. Alloy. Comp. 507(1), 112–119 (2010).
[CrossRef]

Bahlke, M. E.

S. P. Subbarao, M. E. Bahlke, and I. Kymissis, “Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices,” IEEE Trans. Electron. Dev. 57(1), 153–156 (2010).
[CrossRef]

Barnes, W. L.

J. A. E. Wasey and W. L. Barnes, “Efficiency of spontaneous emission from planar microcavities,” J. Mod. Opt. 47(4), 725–741 (2000).
[CrossRef]

Bruijn, H. E.

Bulovic, V.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[CrossRef]

Burrows, P. E.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[CrossRef]

P. E. Burrows and S. R. Forrest, “Electroluminescence from trap limited current transport in vacuum deposited organic light emitting devices,” Appl. Phys. Lett. 64(17), 2285–2287 (1994).
[CrossRef]

Chan, W. K.

A. B. Djurisic, C. Y. Kwong, W. L. Guo, T. W. Lau, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, and W. K. Chan, “Spectroscopic ellipsometry of the optical functions of tris (8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 416(1-2), 233–241 (2002).
[CrossRef]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[CrossRef]

Cowen, S.

S. Cowen and J. R. Sambles, “Resolving the apparent ambiguity in determining the relative permittivity and thickness of a metal film using optical excitation of surface-plasmon polariton,” Opt. Commun. 79(6), 427–430 (1990).
[CrossRef]

Cuniberti, C.

E. Giorgetti, M. Muniz-Miranda, A. Giusti, T. Del Rosso, G. Dellepiane, G. Margheri, S. Sottini, M. Alloisio, and C. Cuniberti, “Spectroscopic investigation on the in situ polymerization of self assembled monolayers of carbazolyldiacetylene CDS9 on silver-coated glass,” Thin Solid Films 495(1-2), 36–39 (2006).
[CrossRef]

de Bruijn, H. E.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5-6), 425–432 (1991).
[CrossRef]

Del Rosso, T.

E. Giorgetti, M. Muniz-Miranda, A. Giusti, T. Del Rosso, G. Dellepiane, G. Margheri, S. Sottini, M. Alloisio, and C. Cuniberti, “Spectroscopic investigation on the in situ polymerization of self assembled monolayers of carbazolyldiacetylene CDS9 on silver-coated glass,” Thin Solid Films 495(1-2), 36–39 (2006).
[CrossRef]

Dellepiane, G.

E. Giorgetti, M. Muniz-Miranda, A. Giusti, T. Del Rosso, G. Dellepiane, G. Margheri, S. Sottini, M. Alloisio, and C. Cuniberti, “Spectroscopic investigation on the in situ polymerization of self assembled monolayers of carbazolyldiacetylene CDS9 on silver-coated glass,” Thin Solid Films 495(1-2), 36–39 (2006).
[CrossRef]

Djurisic, A. B.

A. B. Djurisic, C. Y. Kwong, W. L. Guo, T. W. Lau, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, and W. K. Chan, “Spectroscopic ellipsometry of the optical functions of tris (8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 416(1-2), 233–241 (2002).
[CrossRef]

Dosch, H.

S. Sellner, A. Gerlach, S. Kowarik, F. Schreiber, H. Dosch, S. Meyer, J. Pflaum, and G. Ulbricht, “Comparative Study of the Growth of Sputtered Aluminum Oxide Films on Organic and Inorganic Substrates,” Thin Solid Films 516(18), 6377–6381 (2008).
[CrossRef]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[CrossRef]

El-Nahass, M. M.

M. M. El-Nahass, A. M. Farid, and A. A. Atta, “Structural and optical properties of Tris(8-hydroxyquinoline) aluminum (III) (Alq3) thermal evaporated thin films,” J. Alloy. Comp. 507(1), 112–119 (2010).
[CrossRef]

Farid, A. M.

M. M. El-Nahass, A. M. Farid, and A. A. Atta, “Structural and optical properties of Tris(8-hydroxyquinoline) aluminum (III) (Alq3) thermal evaporated thin films,” J. Alloy. Comp. 507(1), 112–119 (2010).
[CrossRef]

Fendler, J. H.

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[CrossRef]

Forrest, S. R.

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[CrossRef]

P. E. Burrows and S. R. Forrest, “Electroluminescence from trap limited current transport in vacuum deposited organic light emitting devices,” Appl. Phys. Lett. 64(17), 2285–2287 (1994).
[CrossRef]

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[CrossRef]

Friedrich, M.

C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005).
[CrossRef]

Furno, M.

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[CrossRef]

Georgiadis, R.

R. Georgiadis, K. P. Peterlinz, and A. W. Peterson, “Quantitative measurements and modeling of kinetics in Nucleic Acid Monolayer Film using SPR spectroscopy,” J. Am. Chem. Soc. 122(13), 3166–3173 (2000).
[CrossRef]

K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using Surface Plasmon Resonance Spectroscopy,” Opt. Commun. 130(4-6), 260–266 (1996).
[CrossRef]

Gerlach, A.

S. Sellner, A. Gerlach, S. Kowarik, F. Schreiber, H. Dosch, S. Meyer, J. Pflaum, and G. Ulbricht, “Comparative Study of the Growth of Sputtered Aluminum Oxide Films on Organic and Inorganic Substrates,” Thin Solid Films 516(18), 6377–6381 (2008).
[CrossRef]

Gersdorff, M.

C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005).
[CrossRef]

Giorgetti, E.

E. Giorgetti, M. Muniz-Miranda, A. Giusti, T. Del Rosso, G. Dellepiane, G. Margheri, S. Sottini, M. Alloisio, and C. Cuniberti, “Spectroscopic investigation on the in situ polymerization of self assembled monolayers of carbazolyldiacetylene CDS9 on silver-coated glass,” Thin Solid Films 495(1-2), 36–39 (2006).
[CrossRef]

Giusti, A.

E. Giorgetti, M. Muniz-Miranda, A. Giusti, T. Del Rosso, G. Dellepiane, G. Margheri, S. Sottini, M. Alloisio, and C. Cuniberti, “Spectroscopic investigation on the in situ polymerization of self assembled monolayers of carbazolyldiacetylene CDS9 on silver-coated glass,” Thin Solid Films 495(1-2), 36–39 (2006).
[CrossRef]

Granqvist, N.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface Plasmon Resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Greve, J.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5-6), 425–432 (1991).
[CrossRef]

H. E. Bruijn, R. P. Kooyman, and J. Greve, “Determination of dielectric permittivity and thickness of a metal layer from a surface plasmon resonance experiment,” Appl. Opt. 29(13), 1974–1978 (1990).
[CrossRef] [PubMed]

Guo, W. L.

A. B. Djurisic, C. Y. Kwong, W. L. Guo, T. W. Lau, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, and W. K. Chan, “Spectroscopic ellipsometry of the optical functions of tris (8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 416(1-2), 233–241 (2002).
[CrossRef]

Ha, K. S.

J. S. Yuk and K. S. Ha, “Proteomic applications of surface plasmon resonance biosensors: analysis of protein arrays,” Exp. Mol. Med. 37(1), 1–10 (2005).
[CrossRef] [PubMed]

Hajdukova, N.

N. Hajdukova, M. Prochazka, J. Stepanek, and M. Spirkova, “Chemically reduced and laser-ablated gold nanoparticles immobilized to silanized glass plates: Preparation, characterization and SERS spectral testing,” Colloids Surf. A Physicochem. Eng. Asp. 301(1-3), 264–270 (2007).
[CrossRef]

Hartmann, S.

C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005).
[CrossRef]

Herzinger, C. M.

B. Johs and C. M. Herzinger, “Quantifying the Accuracy of Ellipsometer Systems,” Phys. Status Solidi 5(5C), 1031–1035 (2008).
[CrossRef]

Heuken, M.

C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005).
[CrossRef]

Higo, M.

M. Higo, X. Lu, U. Mazur, and K. W. Hipps, “Preparation of Atomically Smooth Aluminum Films: Characterization by Transmission Electron Microscopy and Atomic Force Microscopy,” Langmuir 13(23), 6176–6182 (1997).
[CrossRef]

Himcinschi, C.

C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005).
[CrossRef]

Hipps, K. W.

M. Higo, X. Lu, U. Mazur, and K. W. Hipps, “Preparation of Atomically Smooth Aluminum Films: Characterization by Transmission Electron Microscopy and Atomic Force Microscopy,” Langmuir 13(23), 6176–6182 (1997).
[CrossRef]

Hofmann, S.

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[CrossRef]

Homola, J.

J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Hutter, E.

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[CrossRef]

Johannes, H. H.

C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005).
[CrossRef]

Johs, B.

B. Johs and C. M. Herzinger, “Quantifying the Accuracy of Ellipsometer Systems,” Phys. Status Solidi 5(5C), 1031–1035 (2008).
[CrossRef]

Kooyman, R. P.

Kooyman, R. P. H.

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5-6), 425–432 (1991).
[CrossRef]

Kostruba, A. M.

A. M. Kostruba and O. G. Vlokh, “Accuracy of traditional ellipsometry and complex “ellipsometry – transmission photometry” techniques for systems “absorptive film – transparent substrate”,” Proc. SPIE 3094, 266–271 (1997).
[CrossRef]

Kowalsky, W.

C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005).
[CrossRef]

Kowarik, S.

S. Sellner, A. Gerlach, S. Kowarik, F. Schreiber, H. Dosch, S. Meyer, J. Pflaum, and G. Ulbricht, “Comparative Study of the Growth of Sputtered Aluminum Oxide Films on Organic and Inorganic Substrates,” Thin Solid Films 516(18), 6377–6381 (2008).
[CrossRef]

Kumar, S.

V. K. Shukla and S. Kumar, “Investigations of environmental induced effects on Alq3 thin films by AFM phase imaging,” Appl. Surf. Sci. 253(16), 6848–6853 (2007).
[CrossRef]

S. Kumar, V. K. Shukla, and A. Tripathi, “Ellipsometric investigations on the light induced effects on tris(8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 477(1-2), 240–243 (2005).
[CrossRef]

Kwok, H. S.

A. B. Djurisic, C. Y. Kwong, W. L. Guo, T. W. Lau, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, and W. K. Chan, “Spectroscopic ellipsometry of the optical functions of tris (8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 416(1-2), 233–241 (2002).
[CrossRef]

Kwong, C. Y.

A. B. Djurisic, C. Y. Kwong, W. L. Guo, T. W. Lau, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, and W. K. Chan, “Spectroscopic ellipsometry of the optical functions of tris (8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 416(1-2), 233–241 (2002).
[CrossRef]

Kymissis, I.

S. P. Subbarao, M. E. Bahlke, and I. Kymissis, “Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices,” IEEE Trans. Electron. Dev. 57(1), 153–156 (2010).
[CrossRef]

Lam, L. S. M.

A. B. Djurisic, C. Y. Kwong, W. L. Guo, T. W. Lau, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, and W. K. Chan, “Spectroscopic ellipsometry of the optical functions of tris (8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 416(1-2), 233–241 (2002).
[CrossRef]

Lau, T. W.

A. B. Djurisic, C. Y. Kwong, W. L. Guo, T. W. Lau, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, and W. K. Chan, “Spectroscopic ellipsometry of the optical functions of tris (8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 416(1-2), 233–241 (2002).
[CrossRef]

Leo, K.

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[CrossRef]

Li, E. H.

A. B. Djurisic, C. Y. Kwong, W. L. Guo, T. W. Lau, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, and W. K. Chan, “Spectroscopic ellipsometry of the optical functions of tris (8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 416(1-2), 233–241 (2002).
[CrossRef]

Liang, H.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface Plasmon Resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Lion, Y. F.

B. G. Tilkens, Y. F. Lion, and Y. L. Renotte, “Uncertainties in the values obtained by surface plasmon resonance,” Opt. Eng. 39(2), 363–373 (2000).
[CrossRef]

Liu, Z. T.

A. B. Djurisic, C. Y. Kwong, W. L. Guo, T. W. Lau, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, and W. K. Chan, “Spectroscopic ellipsometry of the optical functions of tris (8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 416(1-2), 233–241 (2002).
[CrossRef]

Lu, X.

M. Higo, X. Lu, U. Mazur, and K. W. Hipps, “Preparation of Atomically Smooth Aluminum Films: Characterization by Transmission Electron Microscopy and Atomic Force Microscopy,” Langmuir 13(23), 6176–6182 (1997).
[CrossRef]

Ludema, K. C.

D. A. Ramsey and K. C. Ludema, “The influences of roughness on film thickness measurements by Mueller matrix ellipsometry,” Rev. Sci. Instrum. 65(9), 2874–2881 (1994).
[CrossRef]

Lüssem, B.

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[CrossRef]

Margheri, G.

E. Giorgetti, M. Muniz-Miranda, A. Giusti, T. Del Rosso, G. Dellepiane, G. Margheri, S. Sottini, M. Alloisio, and C. Cuniberti, “Spectroscopic investigation on the in situ polymerization of self assembled monolayers of carbazolyldiacetylene CDS9 on silver-coated glass,” Thin Solid Films 495(1-2), 36–39 (2006).
[CrossRef]

Mazur, U.

M. Higo, X. Lu, U. Mazur, and K. W. Hipps, “Preparation of Atomically Smooth Aluminum Films: Characterization by Transmission Electron Microscopy and Atomic Force Microscopy,” Langmuir 13(23), 6176–6182 (1997).
[CrossRef]

McCarty, D. M.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[CrossRef]

Meerheim, R.

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[CrossRef]

Meerholz, K.

A. J. Moulé and K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymers layers,” Appl. Phys. Lett. 91(6), 0619011 (2007).
[CrossRef]

Meyer, N.

C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005).
[CrossRef]

Meyer, S.

S. Sellner, A. Gerlach, S. Kowarik, F. Schreiber, H. Dosch, S. Meyer, J. Pflaum, and G. Ulbricht, “Comparative Study of the Growth of Sputtered Aluminum Oxide Films on Organic and Inorganic Substrates,” Thin Solid Films 516(18), 6377–6381 (2008).
[CrossRef]

Miranto, H.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface Plasmon Resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Moulé, A. J.

A. J. Moulé and K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymers layers,” Appl. Phys. Lett. 91(6), 0619011 (2007).
[CrossRef]

Muhammad, F. F.

F. F. Muhammad and K. Sulaiman, “Utilizing a simple and reliable method to investigate the optical functions of small molecular organic films – Alq3 and Gaq3 as examples,” Measurement 44(8), 1468–1474 (2011).
[CrossRef]

Muniz-Miranda, M.

E. Giorgetti, M. Muniz-Miranda, A. Giusti, T. Del Rosso, G. Dellepiane, G. Margheri, S. Sottini, M. Alloisio, and C. Cuniberti, “Spectroscopic investigation on the in situ polymerization of self assembled monolayers of carbazolyldiacetylene CDS9 on silver-coated glass,” Thin Solid Films 495(1-2), 36–39 (2006).
[CrossRef]

Peterlinz, K. A.

K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using Surface Plasmon Resonance Spectroscopy,” Opt. Commun. 130(4-6), 260–266 (1996).
[CrossRef]

Peterlinz, K. P.

R. Georgiadis, K. P. Peterlinz, and A. W. Peterson, “Quantitative measurements and modeling of kinetics in Nucleic Acid Monolayer Film using SPR spectroscopy,” J. Am. Chem. Soc. 122(13), 3166–3173 (2000).
[CrossRef]

Peterson, A. W.

R. Georgiadis, K. P. Peterlinz, and A. W. Peterson, “Quantitative measurements and modeling of kinetics in Nucleic Acid Monolayer Film using SPR spectroscopy,” J. Am. Chem. Soc. 122(13), 3166–3173 (2000).
[CrossRef]

Pflaum, J.

S. Sellner, A. Gerlach, S. Kowarik, F. Schreiber, H. Dosch, S. Meyer, J. Pflaum, and G. Ulbricht, “Comparative Study of the Growth of Sputtered Aluminum Oxide Films on Organic and Inorganic Substrates,” Thin Solid Films 516(18), 6377–6381 (2008).
[CrossRef]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[CrossRef]

Pockrand, I.

I. Pockrand, “Surface Plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72(3), 577–588 (1978).
[CrossRef]

Prochazka, M.

N. Hajdukova, M. Prochazka, J. Stepanek, and M. Spirkova, “Chemically reduced and laser-ablated gold nanoparticles immobilized to silanized glass plates: Preparation, characterization and SERS spectral testing,” Colloids Surf. A Physicochem. Eng. Asp. 301(1-3), 264–270 (2007).
[CrossRef]

Ramsey, D. A.

D. A. Ramsey and K. C. Ludema, “The influences of roughness on film thickness measurements by Mueller matrix ellipsometry,” Rev. Sci. Instrum. 65(9), 2874–2881 (1994).
[CrossRef]

Renotte, Y. L.

B. G. Tilkens, Y. F. Lion, and Y. L. Renotte, “Uncertainties in the values obtained by surface plasmon resonance,” Opt. Eng. 39(2), 363–373 (2000).
[CrossRef]

Roy, D.

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[CrossRef]

Sadowski, J. W.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface Plasmon Resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Sambles, J. R.

S. Cowen and J. R. Sambles, “Resolving the apparent ambiguity in determining the relative permittivity and thickness of a metal film using optical excitation of surface-plasmon polariton,” Opt. Commun. 79(6), 427–430 (1990).
[CrossRef]

Sapochak, L. S.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[CrossRef]

Schreiber, F.

S. Sellner, A. Gerlach, S. Kowarik, F. Schreiber, H. Dosch, S. Meyer, J. Pflaum, and G. Ulbricht, “Comparative Study of the Growth of Sputtered Aluminum Oxide Films on Organic and Inorganic Substrates,” Thin Solid Films 516(18), 6377–6381 (2008).
[CrossRef]

Schröder, U.

U. Schröder, “Der einfluss dünner metallischer decks chichten auf die dispersion von oberflächenplasmaschwingungen in gold-silber-schichtsystemen,” Surf. Sci. 102(1), 118–130 (1981).
[CrossRef]

Schwambera, M.

C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005).
[CrossRef]

Sellner, S.

S. Sellner, A. Gerlach, S. Kowarik, F. Schreiber, H. Dosch, S. Meyer, J. Pflaum, and G. Ulbricht, “Comparative Study of the Growth of Sputtered Aluminum Oxide Films on Organic and Inorganic Substrates,” Thin Solid Films 516(18), 6377–6381 (2008).
[CrossRef]

Shukla, V. K.

V. K. Shukla and S. Kumar, “Investigations of environmental induced effects on Alq3 thin films by AFM phase imaging,” Appl. Surf. Sci. 253(16), 6848–6853 (2007).
[CrossRef]

S. Kumar, V. K. Shukla, and A. Tripathi, “Ellipsometric investigations on the light induced effects on tris(8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 477(1-2), 240–243 (2005).
[CrossRef]

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[CrossRef]

Sottini, S.

E. Giorgetti, M. Muniz-Miranda, A. Giusti, T. Del Rosso, G. Dellepiane, G. Margheri, S. Sottini, M. Alloisio, and C. Cuniberti, “Spectroscopic investigation on the in situ polymerization of self assembled monolayers of carbazolyldiacetylene CDS9 on silver-coated glass,” Thin Solid Films 495(1-2), 36–39 (2006).
[CrossRef]

Spirkova, M.

N. Hajdukova, M. Prochazka, J. Stepanek, and M. Spirkova, “Chemically reduced and laser-ablated gold nanoparticles immobilized to silanized glass plates: Preparation, characterization and SERS spectral testing,” Colloids Surf. A Physicochem. Eng. Asp. 301(1-3), 264–270 (2007).
[CrossRef]

Stepanek, J.

N. Hajdukova, M. Prochazka, J. Stepanek, and M. Spirkova, “Chemically reduced and laser-ablated gold nanoparticles immobilized to silanized glass plates: Preparation, characterization and SERS spectral testing,” Colloids Surf. A Physicochem. Eng. Asp. 301(1-3), 264–270 (2007).
[CrossRef]

Strauch, G.

C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005).
[CrossRef]

Subbarao, S. P.

S. P. Subbarao, M. E. Bahlke, and I. Kymissis, “Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices,” IEEE Trans. Electron. Dev. 57(1), 153–156 (2010).
[CrossRef]

Sulaiman, K.

F. F. Muhammad and K. Sulaiman, “Utilizing a simple and reliable method to investigate the optical functions of small molecular organic films – Alq3 and Gaq3 as examples,” Measurement 44(8), 1468–1474 (2011).
[CrossRef]

Sun, Y.

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[CrossRef]

Thompson, M. E.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[CrossRef]

Tilkens, B. G.

B. G. Tilkens, Y. F. Lion, and Y. L. Renotte, “Uncertainties in the values obtained by surface plasmon resonance,” Opt. Eng. 39(2), 363–373 (2000).
[CrossRef]

Tripathi, A.

S. Kumar, V. K. Shukla, and A. Tripathi, “Ellipsometric investigations on the light induced effects on tris(8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 477(1-2), 240–243 (2005).
[CrossRef]

Ulbricht, G.

S. Sellner, A. Gerlach, S. Kowarik, F. Schreiber, H. Dosch, S. Meyer, J. Pflaum, and G. Ulbricht, “Comparative Study of the Growth of Sputtered Aluminum Oxide Films on Organic and Inorganic Substrates,” Thin Solid Films 516(18), 6377–6381 (2008).
[CrossRef]

Viitala, T.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface Plasmon Resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Vlokh, O. G.

A. M. Kostruba and O. G. Vlokh, “Accuracy of traditional ellipsometry and complex “ellipsometry – transmission photometry” techniques for systems “absorptive film – transparent substrate”,” Proc. SPIE 3094, 266–271 (1997).
[CrossRef]

Wang, B.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface Plasmon Resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Wasey, J. A. E.

J. A. E. Wasey and W. L. Barnes, “Efficiency of spontaneous emission from planar microcavities,” J. Mod. Opt. 47(4), 725–741 (2000).
[CrossRef]

Yliperttula, M.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface Plasmon Resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Yuk, J. S.

J. S. Yuk and K. S. Ha, “Proteomic applications of surface plasmon resonance biosensors: analysis of protein arrays,” Exp. Mol. Med. 37(1), 1–10 (2005).
[CrossRef] [PubMed]

Zahn, D. R. T.

C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[CrossRef]

P. E. Burrows and S. R. Forrest, “Electroluminescence from trap limited current transport in vacuum deposited organic light emitting devices,” Appl. Phys. Lett. 64(17), 2285–2287 (1994).
[CrossRef]

A. J. Moulé and K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymers layers,” Appl. Phys. Lett. 91(6), 0619011 (2007).
[CrossRef]

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

C. Himcinschi, N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H. H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, “Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition,” Appl. Phys., A Mater. Sci. Process. 80(3), 551–555 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

V. K. Shukla and S. Kumar, “Investigations of environmental induced effects on Alq3 thin films by AFM phase imaging,” Appl. Surf. Sci. 253(16), 6848–6853 (2007).
[CrossRef]

Chem. Rev. (1)

J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Colloids Surf. A Physicochem. Eng. Asp. (1)

N. Hajdukova, M. Prochazka, J. Stepanek, and M. Spirkova, “Chemically reduced and laser-ablated gold nanoparticles immobilized to silanized glass plates: Preparation, characterization and SERS spectral testing,” Colloids Surf. A Physicochem. Eng. Asp. 301(1-3), 264–270 (2007).
[CrossRef]

Exp. Mol. Med. (1)

J. S. Yuk and K. S. Ha, “Proteomic applications of surface plasmon resonance biosensors: analysis of protein arrays,” Exp. Mol. Med. 37(1), 1–10 (2005).
[CrossRef] [PubMed]

IEEE Trans. Electron. Dev. (1)

S. P. Subbarao, M. E. Bahlke, and I. Kymissis, “Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices,” IEEE Trans. Electron. Dev. 57(1), 153–156 (2010).
[CrossRef]

J. Alloy. Comp. (1)

M. M. El-Nahass, A. M. Farid, and A. A. Atta, “Structural and optical properties of Tris(8-hydroxyquinoline) aluminum (III) (Alq3) thermal evaporated thin films,” J. Alloy. Comp. 507(1), 112–119 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

R. Georgiadis, K. P. Peterlinz, and A. W. Peterson, “Quantitative measurements and modeling of kinetics in Nucleic Acid Monolayer Film using SPR spectroscopy,” J. Am. Chem. Soc. 122(13), 3166–3173 (2000).
[CrossRef]

J. Mod. Opt. (1)

J. A. E. Wasey and W. L. Barnes, “Efficiency of spontaneous emission from planar microcavities,” J. Mod. Opt. 47(4), 725–741 (2000).
[CrossRef]

J. Phys. Chem. B (1)

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[CrossRef]

Langmuir (1)

M. Higo, X. Lu, U. Mazur, and K. W. Hipps, “Preparation of Atomically Smooth Aluminum Films: Characterization by Transmission Electron Microscopy and Atomic Force Microscopy,” Langmuir 13(23), 6176–6182 (1997).
[CrossRef]

Measurement (1)

F. F. Muhammad and K. Sulaiman, “Utilizing a simple and reliable method to investigate the optical functions of small molecular organic films – Alq3 and Gaq3 as examples,” Measurement 44(8), 1468–1474 (2011).
[CrossRef]

Nat. Photonics (1)

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[CrossRef]

Opt. Commun. (3)

H. E. de Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using Surface Plasmon Resonance,” Opt. Commun. 82(5-6), 425–432 (1991).
[CrossRef]

K. A. Peterlinz and R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using Surface Plasmon Resonance Spectroscopy,” Opt. Commun. 130(4-6), 260–266 (1996).
[CrossRef]

S. Cowen and J. R. Sambles, “Resolving the apparent ambiguity in determining the relative permittivity and thickness of a metal film using optical excitation of surface-plasmon polariton,” Opt. Commun. 79(6), 427–430 (1990).
[CrossRef]

Opt. Eng. (1)

B. G. Tilkens, Y. F. Lion, and Y. L. Renotte, “Uncertainties in the values obtained by surface plasmon resonance,” Opt. Eng. 39(2), 363–373 (2000).
[CrossRef]

Phys. Status Solidi (1)

B. Johs and C. M. Herzinger, “Quantifying the Accuracy of Ellipsometer Systems,” Phys. Status Solidi 5(5C), 1031–1035 (2008).
[CrossRef]

Proc. SPIE (1)

A. M. Kostruba and O. G. Vlokh, “Accuracy of traditional ellipsometry and complex “ellipsometry – transmission photometry” techniques for systems “absorptive film – transparent substrate”,” Proc. SPIE 3094, 266–271 (1997).
[CrossRef]

Rep. Prog. Phys. (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

D. A. Ramsey and K. C. Ludema, “The influences of roughness on film thickness measurements by Mueller matrix ellipsometry,” Rev. Sci. Instrum. 65(9), 2874–2881 (1994).
[CrossRef]

Sens. Actuators B Chem. (1)

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface Plasmon Resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Surf. Sci. (2)

U. Schröder, “Der einfluss dünner metallischer decks chichten auf die dispersion von oberflächenplasmaschwingungen in gold-silber-schichtsystemen,” Surf. Sci. 102(1), 118–130 (1981).
[CrossRef]

I. Pockrand, “Surface Plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72(3), 577–588 (1978).
[CrossRef]

Thin Solid Films (4)

S. Sellner, A. Gerlach, S. Kowarik, F. Schreiber, H. Dosch, S. Meyer, J. Pflaum, and G. Ulbricht, “Comparative Study of the Growth of Sputtered Aluminum Oxide Films on Organic and Inorganic Substrates,” Thin Solid Films 516(18), 6377–6381 (2008).
[CrossRef]

A. B. Djurisic, C. Y. Kwong, W. L. Guo, T. W. Lau, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, and W. K. Chan, “Spectroscopic ellipsometry of the optical functions of tris (8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 416(1-2), 233–241 (2002).
[CrossRef]

E. Giorgetti, M. Muniz-Miranda, A. Giusti, T. Del Rosso, G. Dellepiane, G. Margheri, S. Sottini, M. Alloisio, and C. Cuniberti, “Spectroscopic investigation on the in situ polymerization of self assembled monolayers of carbazolyldiacetylene CDS9 on silver-coated glass,” Thin Solid Films 495(1-2), 36–39 (2006).
[CrossRef]

S. Kumar, V. K. Shukla, and A. Tripathi, “Ellipsometric investigations on the light induced effects on tris(8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films 477(1-2), 240–243 (2005).
[CrossRef]

Other (4)

H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (John Wiley & Sons Ltd, 2007)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer-Verlag, 1988)

R. R. Willey, Practical Monitoring and Control of Optical Thin Films (Willey Optical Consultants, 2007)

J. Worm, “Winspall 2.20 software,” 2001, http://www.mpip-mainz.mpg.de/ johanns/winspall2.ZIP

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of the encapsulated multilayer structures used to perform the TMD and TFT methods. All the samples presented a region with only bare metals that was used to characterize the metal deposition by SPR spectroscopy.

Fig. 2
Fig. 2

Sketch of the SPR spectrometer in the Kreschtmann configuration [1]. The excitation beam comes from a linearly polarized He-Ne laser source at the wavelength of 633 nm. The light is p-polarized by a linear polarizer (P) and is divided into two beams by a beam splitter (BS). The power of the reference beam is measured by the photo detector DR while the transmitted beam is reflected at the hypotenuse of the triangular prism and detected by a second silicon based photo detector DS. The collected data are finally sent to a personal computer (PC) to compute the curve of reflectivity R of the samples in function of the angle of incidence θ.

Fig. 3
Fig. 3

AFM images of a 49 nm thick gold layer (a) and of a film of Alq3 with a thickness of 23.0 nm deposited on the metal (b). The images show a region of 1 μm2.

Fig. 4
Fig. 4

Experimental and theoretical SPR curves of the TMD and TFT samples. On the left, the black and the gray edged points correspond respectively to the measurements on the bilayer with silver and gold metal films and a deposition of Alq3 with a nominal thickness of 23 nm. The continuous lines are the best fit on the experimental data. On the right are represented the SPR curves of the TFT sample. The black and the gray edged points correspond to the measurements on the bilayers with a double deposition of Alq3 with a nominal thickness t1 = 32.0 nm and t2 = 16.5 nm over a gold film. The continuous lines are the best fit on the experimental data.

Fig. 5
Fig. 5

Simulations of the wave vector of the SPP relative to gold/Alq3 and silver/Alq3 interfaces in function of the thickness of the organic layer. The simulations have been performed using the Eq. (1) (○ silver/Alq3, ∆ gold/Alq3) and the numerical approach of the Winspall software (● silver/Alq3, ▲ gold/Alq3). The wavelength of the light is 633 nm, the value of the refractive index of Alq3 is considered to be 1.72 [19], while the values of the thickness and dielectric constant of the metal films are the same as reported in Table 1.

Fig. 6
Fig. 6

Calculated points representing the possible values of thickness (to) and dielectric constant (εo) of the organic layers over the TMD and TFT samples. In the latter the ratio between the thicknesses t1 and t2 of the different organic layers is known, and the intersection point corresponding to the actual characteristic of the thin film is obtained by shifting one set of points. The points are generated using the mean value of refractive index of the metal depositions.

Fig. 7
Fig. 7

Calculated points representing the possible values of thickness (to) and dielectric constant (εo) of the organic layers over the TFT and TMD samples. (a) Dispersion of the points obtained for the TFT sample by varying the parameters εr, εI and tm of the gold deposition in the limits dictated by the accuracy reported in Table 1. (b) Dispersion of the points obtained for the TFT and TMD samples by varying only the real part of the dielectric constant of the metal depositions.

Tables (2)

Tables Icon

Table 1 Mean values and standard deviation of the complex dielectric constant (εr + I εi) and thickness tm of the bare metal films obtained investigating a region of about 2 cm2 by SPR spectroscopy. The accuracy of the values reflects the non homogeneity of the metal deposition.

Tables Icon

Table 2 Mean values and accuracy in the measurement of the refractive index of Alq3 at the wavelength of 633 nm as reported by us and other authors.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k SPP k 0 +Δ k 1 +Δ k 2 ,
k 0 = ω c Re[ ( ε m ε m +1 ) 1 2 ],
Δ k 1 = ω c ( ε o 1 ε o ) ( ε r ε r +1 ) 2 ( ε o ε r 1 ε r ) ( ε r ) 1 2 ( 2π t o λ ),
Δ k 2 = 1 k o [ 2 ε o 2 ( 1 ε o ) ( ε r +1) 2 ]Δ k 1 2 .

Metrics