Abstract

This paper presents an indirect time-of-flight (TOF) measurement technique with an impulse photocurrent response of a lock-in pixel. By using a short-pulse laser, the generated photocurrent can be presumed to be an impulse response. This facilitates the utilization of the full high-speed performance of the photodetector and gives high range resolution. As a proof-of-concept, a test chip with a lock-in pixel based on draining-only modulation was implemented using 0.11 μm CMOS image-sensor technology. The test chip achieved a range resolution of 0.29 mm in a 50-mm measurable range, which corresponds to a time resolution of 1.9 ps and the successful acquisition of a 3-mm example step.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
    [CrossRef]
  2. D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10-μm lock-in pixels in 0.18-μm CMOS imaging technology,IEEE J. Solid-State Circuits 46(1), 248–258 (2011).
    [CrossRef]
  3. S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7(12), 1578–1586 (2007).
    [CrossRef]
  4. S.-J. Kim, D. K. Kim, B. Kang, and K. Lee, “A CMOS image sensor based on unified pixel architecture with time-division multiplexing scheme for color and depth image acquisition,” IEEE J. Solid-State Circuits 47(11), 2834–2845 (2012).
    [CrossRef]
  5. K. Yasutomi, T. Usui, S. Han, M. Kodama, T. Takasawa, K. Kagawa, and S. Kawahito, “A time-of-flight image sensor with sub-mm resolution using draining only modulation pixels,” in Proc. 2013 Int. Image Sensor Workshop (2013), pp. 357–360.
  6. Z. Li, S. Kawahito, K. Yasutomi, K. Kagawa, J. Ukon, M. Hashimoto, and H. Niioka, “A time-resolved CMOS image sensor with draining-only modulation pixels for fluorescence lifetime imaging,” IEEE Trans. Electron. Devices 59(10), 2715–2722 (2012).
    [CrossRef]
  7. K. Yasutomi, T. Usui, S. Han, T. Takasawa, K. Kagawa, and S. Kawahito, “A 0.3mm-resolution time-of-flight CMOS range imager with column-gating clock-skew calibration,” in Dig. Tech. Papers, IEEE Int. Solid-State Circuits Conf. (ISSCC) (2014), pp. 132–133.
  8. VECTORON, Kosaka Laboratory Ltd., http://www.kosakalab.co.jp/english/product/precision/3_dimensions/
  9. FaroArm, FARO Technologies Inc., http://www.faro.com/
  10. C. Tubert, L. Simony, F. Roy, A. Tournier, L. Pinzelli, and P. Magnan, “High speed dual port pinned-photodiode for time-of-flight imaging,” in Proc. 2009 Int. Image Sensor Workshop (2009), pp. 357–360.
  11. H. Takeshita, T. Sawada, T. Iida, K. Yasutomi, and S. Kawahito, “High-speed charge transfer pinned-photodiode for a CMOS time-of-flight range image sensor,” Proc. SPIE 7536, 75360R (2010).
    [CrossRef]

2012

S.-J. Kim, D. K. Kim, B. Kang, and K. Lee, “A CMOS image sensor based on unified pixel architecture with time-division multiplexing scheme for color and depth image acquisition,” IEEE J. Solid-State Circuits 47(11), 2834–2845 (2012).
[CrossRef]

Z. Li, S. Kawahito, K. Yasutomi, K. Kagawa, J. Ukon, M. Hashimoto, and H. Niioka, “A time-resolved CMOS image sensor with draining-only modulation pixels for fluorescence lifetime imaging,” IEEE Trans. Electron. Devices 59(10), 2715–2722 (2012).
[CrossRef]

2011

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10-μm lock-in pixels in 0.18-μm CMOS imaging technology,IEEE J. Solid-State Circuits 46(1), 248–258 (2011).
[CrossRef]

2010

H. Takeshita, T. Sawada, T. Iida, K. Yasutomi, and S. Kawahito, “High-speed charge transfer pinned-photodiode for a CMOS time-of-flight range image sensor,” Proc. SPIE 7536, 75360R (2010).
[CrossRef]

2007

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7(12), 1578–1586 (2007).
[CrossRef]

2001

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

Gonzo, L.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10-μm lock-in pixels in 0.18-μm CMOS imaging technology,IEEE J. Solid-State Circuits 46(1), 248–258 (2011).
[CrossRef]

Halin, I. A.

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7(12), 1578–1586 (2007).
[CrossRef]

Han, S.

K. Yasutomi, T. Usui, S. Han, M. Kodama, T. Takasawa, K. Kagawa, and S. Kawahito, “A time-of-flight image sensor with sub-mm resolution using draining only modulation pixels,” in Proc. 2013 Int. Image Sensor Workshop (2013), pp. 357–360.

K. Yasutomi, T. Usui, S. Han, T. Takasawa, K. Kagawa, and S. Kawahito, “A 0.3mm-resolution time-of-flight CMOS range imager with column-gating clock-skew calibration,” in Dig. Tech. Papers, IEEE Int. Solid-State Circuits Conf. (ISSCC) (2014), pp. 132–133.

Hashimoto, M.

Z. Li, S. Kawahito, K. Yasutomi, K. Kagawa, J. Ukon, M. Hashimoto, and H. Niioka, “A time-resolved CMOS image sensor with draining-only modulation pixels for fluorescence lifetime imaging,” IEEE Trans. Electron. Devices 59(10), 2715–2722 (2012).
[CrossRef]

Homma, M.

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7(12), 1578–1586 (2007).
[CrossRef]

Iida, T.

H. Takeshita, T. Sawada, T. Iida, K. Yasutomi, and S. Kawahito, “High-speed charge transfer pinned-photodiode for a CMOS time-of-flight range image sensor,” Proc. SPIE 7536, 75360R (2010).
[CrossRef]

Kagawa, K.

Z. Li, S. Kawahito, K. Yasutomi, K. Kagawa, J. Ukon, M. Hashimoto, and H. Niioka, “A time-resolved CMOS image sensor with draining-only modulation pixels for fluorescence lifetime imaging,” IEEE Trans. Electron. Devices 59(10), 2715–2722 (2012).
[CrossRef]

K. Yasutomi, T. Usui, S. Han, T. Takasawa, K. Kagawa, and S. Kawahito, “A 0.3mm-resolution time-of-flight CMOS range imager with column-gating clock-skew calibration,” in Dig. Tech. Papers, IEEE Int. Solid-State Circuits Conf. (ISSCC) (2014), pp. 132–133.

K. Yasutomi, T. Usui, S. Han, M. Kodama, T. Takasawa, K. Kagawa, and S. Kawahito, “A time-of-flight image sensor with sub-mm resolution using draining only modulation pixels,” in Proc. 2013 Int. Image Sensor Workshop (2013), pp. 357–360.

Kang, B.

S.-J. Kim, D. K. Kim, B. Kang, and K. Lee, “A CMOS image sensor based on unified pixel architecture with time-division multiplexing scheme for color and depth image acquisition,” IEEE J. Solid-State Circuits 47(11), 2834–2845 (2012).
[CrossRef]

Kawahito, S.

Z. Li, S. Kawahito, K. Yasutomi, K. Kagawa, J. Ukon, M. Hashimoto, and H. Niioka, “A time-resolved CMOS image sensor with draining-only modulation pixels for fluorescence lifetime imaging,” IEEE Trans. Electron. Devices 59(10), 2715–2722 (2012).
[CrossRef]

H. Takeshita, T. Sawada, T. Iida, K. Yasutomi, and S. Kawahito, “High-speed charge transfer pinned-photodiode for a CMOS time-of-flight range image sensor,” Proc. SPIE 7536, 75360R (2010).
[CrossRef]

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7(12), 1578–1586 (2007).
[CrossRef]

K. Yasutomi, T. Usui, S. Han, M. Kodama, T. Takasawa, K. Kagawa, and S. Kawahito, “A time-of-flight image sensor with sub-mm resolution using draining only modulation pixels,” in Proc. 2013 Int. Image Sensor Workshop (2013), pp. 357–360.

K. Yasutomi, T. Usui, S. Han, T. Takasawa, K. Kagawa, and S. Kawahito, “A 0.3mm-resolution time-of-flight CMOS range imager with column-gating clock-skew calibration,” in Dig. Tech. Papers, IEEE Int. Solid-State Circuits Conf. (ISSCC) (2014), pp. 132–133.

Kim, D. K.

S.-J. Kim, D. K. Kim, B. Kang, and K. Lee, “A CMOS image sensor based on unified pixel architecture with time-division multiplexing scheme for color and depth image acquisition,” IEEE J. Solid-State Circuits 47(11), 2834–2845 (2012).
[CrossRef]

Kim, S.-J.

S.-J. Kim, D. K. Kim, B. Kang, and K. Lee, “A CMOS image sensor based on unified pixel architecture with time-division multiplexing scheme for color and depth image acquisition,” IEEE J. Solid-State Circuits 47(11), 2834–2845 (2012).
[CrossRef]

Kodama, M.

K. Yasutomi, T. Usui, S. Han, M. Kodama, T. Takasawa, K. Kagawa, and S. Kawahito, “A time-of-flight image sensor with sub-mm resolution using draining only modulation pixels,” in Proc. 2013 Int. Image Sensor Workshop (2013), pp. 357–360.

Lange, R.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

Lee, K.

S.-J. Kim, D. K. Kim, B. Kang, and K. Lee, “A CMOS image sensor based on unified pixel architecture with time-division multiplexing scheme for color and depth image acquisition,” IEEE J. Solid-State Circuits 47(11), 2834–2845 (2012).
[CrossRef]

Li, Z.

Z. Li, S. Kawahito, K. Yasutomi, K. Kagawa, J. Ukon, M. Hashimoto, and H. Niioka, “A time-resolved CMOS image sensor with draining-only modulation pixels for fluorescence lifetime imaging,” IEEE Trans. Electron. Devices 59(10), 2715–2722 (2012).
[CrossRef]

Maeda, Y.

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7(12), 1578–1586 (2007).
[CrossRef]

Magnan, P.

C. Tubert, L. Simony, F. Roy, A. Tournier, L. Pinzelli, and P. Magnan, “High speed dual port pinned-photodiode for time-of-flight imaging,” in Proc. 2009 Int. Image Sensor Workshop (2009), pp. 357–360.

Malfatti, M.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10-μm lock-in pixels in 0.18-μm CMOS imaging technology,IEEE J. Solid-State Circuits 46(1), 248–258 (2011).
[CrossRef]

Massari, N.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10-μm lock-in pixels in 0.18-μm CMOS imaging technology,IEEE J. Solid-State Circuits 46(1), 248–258 (2011).
[CrossRef]

Niioka, H.

Z. Li, S. Kawahito, K. Yasutomi, K. Kagawa, J. Ukon, M. Hashimoto, and H. Niioka, “A time-resolved CMOS image sensor with draining-only modulation pixels for fluorescence lifetime imaging,” IEEE Trans. Electron. Devices 59(10), 2715–2722 (2012).
[CrossRef]

Pancheri, L.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10-μm lock-in pixels in 0.18-μm CMOS imaging technology,IEEE J. Solid-State Circuits 46(1), 248–258 (2011).
[CrossRef]

Perenzoni, M.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10-μm lock-in pixels in 0.18-μm CMOS imaging technology,IEEE J. Solid-State Circuits 46(1), 248–258 (2011).
[CrossRef]

Pinzelli, L.

C. Tubert, L. Simony, F. Roy, A. Tournier, L. Pinzelli, and P. Magnan, “High speed dual port pinned-photodiode for time-of-flight imaging,” in Proc. 2009 Int. Image Sensor Workshop (2009), pp. 357–360.

Roy, F.

C. Tubert, L. Simony, F. Roy, A. Tournier, L. Pinzelli, and P. Magnan, “High speed dual port pinned-photodiode for time-of-flight imaging,” in Proc. 2009 Int. Image Sensor Workshop (2009), pp. 357–360.

Sawada, T.

H. Takeshita, T. Sawada, T. Iida, K. Yasutomi, and S. Kawahito, “High-speed charge transfer pinned-photodiode for a CMOS time-of-flight range image sensor,” Proc. SPIE 7536, 75360R (2010).
[CrossRef]

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7(12), 1578–1586 (2007).
[CrossRef]

Seitz, P.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

Simony, L.

C. Tubert, L. Simony, F. Roy, A. Tournier, L. Pinzelli, and P. Magnan, “High speed dual port pinned-photodiode for time-of-flight imaging,” in Proc. 2009 Int. Image Sensor Workshop (2009), pp. 357–360.

Stoppa, D.

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10-μm lock-in pixels in 0.18-μm CMOS imaging technology,IEEE J. Solid-State Circuits 46(1), 248–258 (2011).
[CrossRef]

Takasawa, T.

K. Yasutomi, T. Usui, S. Han, T. Takasawa, K. Kagawa, and S. Kawahito, “A 0.3mm-resolution time-of-flight CMOS range imager with column-gating clock-skew calibration,” in Dig. Tech. Papers, IEEE Int. Solid-State Circuits Conf. (ISSCC) (2014), pp. 132–133.

K. Yasutomi, T. Usui, S. Han, M. Kodama, T. Takasawa, K. Kagawa, and S. Kawahito, “A time-of-flight image sensor with sub-mm resolution using draining only modulation pixels,” in Proc. 2013 Int. Image Sensor Workshop (2013), pp. 357–360.

Takeshita, H.

H. Takeshita, T. Sawada, T. Iida, K. Yasutomi, and S. Kawahito, “High-speed charge transfer pinned-photodiode for a CMOS time-of-flight range image sensor,” Proc. SPIE 7536, 75360R (2010).
[CrossRef]

Tournier, A.

C. Tubert, L. Simony, F. Roy, A. Tournier, L. Pinzelli, and P. Magnan, “High speed dual port pinned-photodiode for time-of-flight imaging,” in Proc. 2009 Int. Image Sensor Workshop (2009), pp. 357–360.

Tubert, C.

C. Tubert, L. Simony, F. Roy, A. Tournier, L. Pinzelli, and P. Magnan, “High speed dual port pinned-photodiode for time-of-flight imaging,” in Proc. 2009 Int. Image Sensor Workshop (2009), pp. 357–360.

Ukon, J.

Z. Li, S. Kawahito, K. Yasutomi, K. Kagawa, J. Ukon, M. Hashimoto, and H. Niioka, “A time-resolved CMOS image sensor with draining-only modulation pixels for fluorescence lifetime imaging,” IEEE Trans. Electron. Devices 59(10), 2715–2722 (2012).
[CrossRef]

Ushinaga, T.

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7(12), 1578–1586 (2007).
[CrossRef]

Usui, T.

K. Yasutomi, T. Usui, S. Han, M. Kodama, T. Takasawa, K. Kagawa, and S. Kawahito, “A time-of-flight image sensor with sub-mm resolution using draining only modulation pixels,” in Proc. 2013 Int. Image Sensor Workshop (2013), pp. 357–360.

K. Yasutomi, T. Usui, S. Han, T. Takasawa, K. Kagawa, and S. Kawahito, “A 0.3mm-resolution time-of-flight CMOS range imager with column-gating clock-skew calibration,” in Dig. Tech. Papers, IEEE Int. Solid-State Circuits Conf. (ISSCC) (2014), pp. 132–133.

Yasutomi, K.

Z. Li, S. Kawahito, K. Yasutomi, K. Kagawa, J. Ukon, M. Hashimoto, and H. Niioka, “A time-resolved CMOS image sensor with draining-only modulation pixels for fluorescence lifetime imaging,” IEEE Trans. Electron. Devices 59(10), 2715–2722 (2012).
[CrossRef]

H. Takeshita, T. Sawada, T. Iida, K. Yasutomi, and S. Kawahito, “High-speed charge transfer pinned-photodiode for a CMOS time-of-flight range image sensor,” Proc. SPIE 7536, 75360R (2010).
[CrossRef]

K. Yasutomi, T. Usui, S. Han, T. Takasawa, K. Kagawa, and S. Kawahito, “A 0.3mm-resolution time-of-flight CMOS range imager with column-gating clock-skew calibration,” in Dig. Tech. Papers, IEEE Int. Solid-State Circuits Conf. (ISSCC) (2014), pp. 132–133.

K. Yasutomi, T. Usui, S. Han, M. Kodama, T. Takasawa, K. Kagawa, and S. Kawahito, “A time-of-flight image sensor with sub-mm resolution using draining only modulation pixels,” in Proc. 2013 Int. Image Sensor Workshop (2013), pp. 357–360.

IEEE J. Quantum Electron.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

IEEE J. Solid-State Circuits

D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A range image sensor based on 10-μm lock-in pixels in 0.18-μm CMOS imaging technology,IEEE J. Solid-State Circuits 46(1), 248–258 (2011).
[CrossRef]

S.-J. Kim, D. K. Kim, B. Kang, and K. Lee, “A CMOS image sensor based on unified pixel architecture with time-division multiplexing scheme for color and depth image acquisition,” IEEE J. Solid-State Circuits 47(11), 2834–2845 (2012).
[CrossRef]

IEEE Sens. J.

S. Kawahito, I. A. Halin, T. Ushinaga, T. Sawada, M. Homma, and Y. Maeda, “A CMOS time-of-flight range image sensor with gates-on-field-oxide structure,” IEEE Sens. J. 7(12), 1578–1586 (2007).
[CrossRef]

IEEE Trans. Electron. Devices

Z. Li, S. Kawahito, K. Yasutomi, K. Kagawa, J. Ukon, M. Hashimoto, and H. Niioka, “A time-resolved CMOS image sensor with draining-only modulation pixels for fluorescence lifetime imaging,” IEEE Trans. Electron. Devices 59(10), 2715–2722 (2012).
[CrossRef]

Proc. SPIE

H. Takeshita, T. Sawada, T. Iida, K. Yasutomi, and S. Kawahito, “High-speed charge transfer pinned-photodiode for a CMOS time-of-flight range image sensor,” Proc. SPIE 7536, 75360R (2010).
[CrossRef]

Other

K. Yasutomi, T. Usui, S. Han, T. Takasawa, K. Kagawa, and S. Kawahito, “A 0.3mm-resolution time-of-flight CMOS range imager with column-gating clock-skew calibration,” in Dig. Tech. Papers, IEEE Int. Solid-State Circuits Conf. (ISSCC) (2014), pp. 132–133.

VECTORON, Kosaka Laboratory Ltd., http://www.kosakalab.co.jp/english/product/precision/3_dimensions/

FaroArm, FARO Technologies Inc., http://www.faro.com/

C. Tubert, L. Simony, F. Roy, A. Tournier, L. Pinzelli, and P. Magnan, “High speed dual port pinned-photodiode for time-of-flight imaging,” in Proc. 2009 Int. Image Sensor Workshop (2009), pp. 357–360.

K. Yasutomi, T. Usui, S. Han, M. Kodama, T. Takasawa, K. Kagawa, and S. Kawahito, “A time-of-flight image sensor with sub-mm resolution using draining only modulation pixels,” in Proc. 2013 Int. Image Sensor Workshop (2013), pp. 357–360.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Conventional indirect TOF range measurement methods: (a) continuous wave, (b) pulsed illumination.

Fig. 2
Fig. 2

Timing diagram of the proposed TOF measurement.

Fig. 3
Fig. 3

Pixel schematic.

Fig. 4
Fig. 4

Pixel operation.

Fig. 5
Fig. 5

(a)The layouts of triangular and rectangular PDs, (b)simulated potential and electric field distributions in the channel when the TD is closed, (c) simulated photocurrent response.

Fig. 6
Fig. 6

Simulated photocurrent responses for an incident light pulse of 440 nm and 870 nm wavelengths. These photocurrents are normalized by the maximum of each photocurrent.

Fig. 7
Fig. 7

Measured equivalent distance and resolution as a function of the equivalent distance, and its measurement setup.

Fig. 8
Fig. 8

Modulation characteristic.

Fig. 9
Fig. 9

Dependency of estimated distance on light echo intensity. The measured r as a function of N1 is shown.

Fig. 10
Fig. 10

One-axis measurement results.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ph = { 0 ( t < t tof ) I M τ 0 ( t t tof ) ( t tof t < τ 0 + t tof ) I M I M τ 0 ( t t tof τ 0 ) ( τ 0 + t tof t < 2 τ 0 + t tof )
N 1 = t tof t tof + 2 τ 0 I M q τ 0 ( t t tof ) d t + I B T P q = I M τ 0 + I B T P q
N 2 = t tof T offset I M q τ 0 ( t t tof ) d t + I B T P q = I M 2 q τ 0 ( T offset t tof ) 2 + I B T P q
N 3 = I B T P q
L = c 2 t tof = c 2 ( T offset τ 0 2 r )
r = N 2 N 3 N 1 N 3
σ L = c τ 0 2 1 + r 2 N 1

Metrics