Abstract

Applications of LSPR nano-particles in various areas of solar cells, LSPR biosensors, and SERS biosensors, based on interaction of light with noble metal nano-particles is increasing. Therefore, design and nano-fabrication of the LSPR devices is a key step in developing such applications. Design of nano-structures with desirable spectral properties using numerical techniques such as finite difference time domain (FDTD) is the first step in this work. A new structure called nano-sinusoid, satisfying the some desirable LSPR characteristics, is designed and simulated using the FDTD method. In the next stage, analytical method of electro static eigen mode method is used to validate the simulation results. The, nano-fabrications method of electron beam lithography (EBL) is implemented to fabricate the proposed profile with high precision. Finally, atomic force microscopy (AFM) is used to investigate the shape of the fabricated nano-particles, and the dark field microscopy is employed to demonstrate the particular spectral characteristics of the proposed nano-sinusoids.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).
  2. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
    [CrossRef]
  3. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  4. D. Mortazavi, A. Z. Kouzani, and A. Kaynak, “Nano-plasmonic biosensors: A review,” in ICMEA'11, Harbin, China (2011).
  5. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  6. T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
    [CrossRef]
  7. T. J. Davis, D. E. Gómez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10(7), 2618–2625 (2010).
    [CrossRef] [PubMed]
  8. S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
    [CrossRef] [PubMed]
  9. D. Mortazavi, A. Z. Kouzani, A. Kaynak, and W. Duan, “Developing LSPR design guidlines,” PIER 126, 203–235 (2012).
    [CrossRef]
  10. D. Mortazavi, A.Z. Kouzani, Y. Maffinejad, and MD K. Hosain, “Plasmon eignevalues as a function of nano-spheroids size and elongation,” in ICMEA'12, Kobe, Japan, July (2012).
  11. D. Mortazavi, A. Z. Kouzani, and K. C. Vernon, “A resonance tunable and durable LSPR nano-particle sensor: Al2O3 capped silver nano-disks,” PIER 130, 429–446 (2012).
    [CrossRef]
  12. D. Mortazavi, A.Z. Kouzani, and A. Kaynak, “Investigating nanoparticle-substrate interaction in LSPR biosensing using the image-charge theory,” in EMBC'12, San Diego, USA, August (2012).
  13. D. Mortazavi, A. Z. Kouzani, and L. Matekovits, “Investigation on localized surface plasmon resonance of different nano–particles for bio-sensor applications,” in ICEAA'12, Cape Town, South Africa (2012).
  14. A. J. Haes, J. Zhao, S. Zou, C. S. Own, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Solution-phase, triangular Ag nanotriangles fabricated by nanosphere lithography,” J. Phys. Chem. B 109(22), 11158–11162 (2005).
    [CrossRef] [PubMed]
  15. S. Zhu, F. Li, C. Du, and Y. Fu, “Novel bio-nanochip based on localized surface plasmonresonance spectroscopy of rhombic nanoparticles,” Nanomedicine 3(5), 669–677 (2008).
    [CrossRef] [PubMed]
  16. D. Mortazavi, A. Z. Kouzani, and L. Matekovits, “Evolution towards a new LSPR particle: Nano-sinusoid,” PIER 132, 199–213 (2012).
    [CrossRef]
  17. M. Altissimo, “E-beam lithography for micro-nanofabrication,” Biomicrofluidics 4(2), 026503 (2010).
    [CrossRef] [PubMed]
  18. G. W. Snedecor and W. G. Cochran, Statistical Methods, 8th ed. (Iowa State University, 1980).
  19. Mathworks, Optimization Toolbox, User’s Guide (2012).
  20. H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceedings of 2nd Berkeley Symposium (1951), 481–492.
  21. C. Gao, Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, and Y. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. Engl. 51(23), 5629–5633 (2012).
    [CrossRef] [PubMed]
  22. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Shatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  23. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [CrossRef]
  24. D. Mortazavi, A. Z. Kouzani, L. Matekovits, and W. Duan, “Localized surface plasmon resonance: nano-sinusoid arrays,” J. Electromagn. Waves Appl. 27, 638–648 (2013).
  25. G. C. Schatz and R. P. van Duyne, Electromagnetic Mechanism of Surface-Enhanced Spectroscopy (John Wiley, 2002).
  26. M. G. Blaber, A.-I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR imaging of silver triangular nanoprisms: correlating scattering with structure using electrodynamics for plasmon lifetime analysis,” J. Phys. Chem. C 116(1), 393–403 (2012).
    [CrossRef]

2013

D. Mortazavi, A. Z. Kouzani, L. Matekovits, and W. Duan, “Localized surface plasmon resonance: nano-sinusoid arrays,” J. Electromagn. Waves Appl. 27, 638–648 (2013).

2012

M. G. Blaber, A.-I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR imaging of silver triangular nanoprisms: correlating scattering with structure using electrodynamics for plasmon lifetime analysis,” J. Phys. Chem. C 116(1), 393–403 (2012).
[CrossRef]

D. Mortazavi, A. Z. Kouzani, and L. Matekovits, “Evolution towards a new LSPR particle: Nano-sinusoid,” PIER 132, 199–213 (2012).
[CrossRef]

C. Gao, Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, and Y. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. Engl. 51(23), 5629–5633 (2012).
[CrossRef] [PubMed]

D. Mortazavi, A. Z. Kouzani, A. Kaynak, and W. Duan, “Developing LSPR design guidlines,” PIER 126, 203–235 (2012).
[CrossRef]

D. Mortazavi, A. Z. Kouzani, and K. C. Vernon, “A resonance tunable and durable LSPR nano-particle sensor: Al2O3 capped silver nano-disks,” PIER 130, 429–446 (2012).
[CrossRef]

2011

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
[CrossRef] [PubMed]

2010

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10(7), 2618–2625 (2010).
[CrossRef] [PubMed]

M. Altissimo, “E-beam lithography for micro-nanofabrication,” Biomicrofluidics 4(2), 026503 (2010).
[CrossRef] [PubMed]

2009

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

2008

S. Zhu, F. Li, C. Du, and Y. Fu, “Novel bio-nanochip based on localized surface plasmonresonance spectroscopy of rhombic nanoparticles,” Nanomedicine 3(5), 669–677 (2008).
[CrossRef] [PubMed]

2007

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

2005

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

A. J. Haes, J. Zhao, S. Zou, C. S. Own, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Solution-phase, triangular Ag nanotriangles fabricated by nanosphere lithography,” J. Phys. Chem. B 109(22), 11158–11162 (2005).
[CrossRef] [PubMed]

2003

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Shatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

2002

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).

1999

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

Altissimo, M.

M. Altissimo, “E-beam lithography for micro-nanofabrication,” Biomicrofluidics 4(2), 026503 (2010).
[CrossRef] [PubMed]

Barrow, S. J.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
[CrossRef] [PubMed]

Bingham, J. M.

M. G. Blaber, A.-I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR imaging of silver triangular nanoprisms: correlating scattering with structure using electrodynamics for plasmon lifetime analysis,” J. Phys. Chem. C 116(1), 393–403 (2012).
[CrossRef]

Blaber, M. G.

M. G. Blaber, A.-I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR imaging of silver triangular nanoprisms: correlating scattering with structure using electrodynamics for plasmon lifetime analysis,” J. Phys. Chem. C 116(1), 393–403 (2012).
[CrossRef]

Cheng, Q.

C. Gao, Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, and Y. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. Engl. 51(23), 5629–5633 (2012).
[CrossRef] [PubMed]

Chi, M.

C. Gao, Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, and Y. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. Engl. 51(23), 5629–5633 (2012).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Shatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Davis, T. J.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
[CrossRef] [PubMed]

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10(7), 2618–2625 (2010).
[CrossRef] [PubMed]

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

Du, C.

S. Zhu, F. Li, C. Du, and Y. Fu, “Novel bio-nanochip based on localized surface plasmonresonance spectroscopy of rhombic nanoparticles,” Nanomedicine 3(5), 669–677 (2008).
[CrossRef] [PubMed]

Duan, W.

D. Mortazavi, A. Z. Kouzani, L. Matekovits, and W. Duan, “Localized surface plasmon resonance: nano-sinusoid arrays,” J. Electromagn. Waves Appl. 27, 638–648 (2013).

D. Mortazavi, A. Z. Kouzani, A. Kaynak, and W. Duan, “Developing LSPR design guidlines,” PIER 126, 203–235 (2012).
[CrossRef]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

Fredkin, D. R.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

Fu, Y.

S. Zhu, F. Li, C. Du, and Y. Fu, “Novel bio-nanochip based on localized surface plasmonresonance spectroscopy of rhombic nanoparticles,” Nanomedicine 3(5), 669–677 (2008).
[CrossRef] [PubMed]

Funston, A. M.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
[CrossRef] [PubMed]

Gao, C.

C. Gao, Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, and Y. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. Engl. 51(23), 5629–5633 (2012).
[CrossRef] [PubMed]

Gómez, D. E.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
[CrossRef] [PubMed]

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10(7), 2618–2625 (2010).
[CrossRef] [PubMed]

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

Haes, A. J.

A. J. Haes, J. Zhao, S. Zou, C. S. Own, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Solution-phase, triangular Ag nanotriangles fabricated by nanosphere lithography,” J. Phys. Chem. B 109(22), 11158–11162 (2005).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).

Henry, A.-I.

M. G. Blaber, A.-I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR imaging of silver triangular nanoprisms: correlating scattering with structure using electrodynamics for plasmon lifetime analysis,” J. Phys. Chem. C 116(1), 393–403 (2012).
[CrossRef]

Kaynak, A.

D. Mortazavi, A. Z. Kouzani, A. Kaynak, and W. Duan, “Developing LSPR design guidlines,” PIER 126, 203–235 (2012).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Shatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kouzani, A. Z.

D. Mortazavi, A. Z. Kouzani, L. Matekovits, and W. Duan, “Localized surface plasmon resonance: nano-sinusoid arrays,” J. Electromagn. Waves Appl. 27, 638–648 (2013).

D. Mortazavi, A. Z. Kouzani, and K. C. Vernon, “A resonance tunable and durable LSPR nano-particle sensor: Al2O3 capped silver nano-disks,” PIER 130, 429–446 (2012).
[CrossRef]

D. Mortazavi, A. Z. Kouzani, and L. Matekovits, “Evolution towards a new LSPR particle: Nano-sinusoid,” PIER 132, 199–213 (2012).
[CrossRef]

D. Mortazavi, A. Z. Kouzani, A. Kaynak, and W. Duan, “Developing LSPR design guidlines,” PIER 126, 203–235 (2012).
[CrossRef]

Kuhn, H. W.

H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceedings of 2nd Berkeley Symposium (1951), 481–492.

Li, F.

S. Zhu, F. Li, C. Du, and Y. Fu, “Novel bio-nanochip based on localized surface plasmonresonance spectroscopy of rhombic nanoparticles,” Nanomedicine 3(5), 669–677 (2008).
[CrossRef] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

Liu, Y.

C. Gao, Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, and Y. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. Engl. 51(23), 5629–5633 (2012).
[CrossRef] [PubMed]

Lu, Z.

C. Gao, Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, and Y. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. Engl. 51(23), 5629–5633 (2012).
[CrossRef] [PubMed]

Marks, L. D.

A. J. Haes, J. Zhao, S. Zou, C. S. Own, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Solution-phase, triangular Ag nanotriangles fabricated by nanosphere lithography,” J. Phys. Chem. B 109(22), 11158–11162 (2005).
[CrossRef] [PubMed]

Matekovits, L.

D. Mortazavi, A. Z. Kouzani, L. Matekovits, and W. Duan, “Localized surface plasmon resonance: nano-sinusoid arrays,” J. Electromagn. Waves Appl. 27, 638–648 (2013).

D. Mortazavi, A. Z. Kouzani, and L. Matekovits, “Evolution towards a new LSPR particle: Nano-sinusoid,” PIER 132, 199–213 (2012).
[CrossRef]

Mayergoyz, I. D.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

Mortazavi, D.

D. Mortazavi, A. Z. Kouzani, L. Matekovits, and W. Duan, “Localized surface plasmon resonance: nano-sinusoid arrays,” J. Electromagn. Waves Appl. 27, 638–648 (2013).

D. Mortazavi, A. Z. Kouzani, and K. C. Vernon, “A resonance tunable and durable LSPR nano-particle sensor: Al2O3 capped silver nano-disks,” PIER 130, 429–446 (2012).
[CrossRef]

D. Mortazavi, A. Z. Kouzani, A. Kaynak, and W. Duan, “Developing LSPR design guidlines,” PIER 126, 203–235 (2012).
[CrossRef]

D. Mortazavi, A. Z. Kouzani, and L. Matekovits, “Evolution towards a new LSPR particle: Nano-sinusoid,” PIER 132, 199–213 (2012).
[CrossRef]

Mulvaney, P.

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
[CrossRef] [PubMed]

Own, C. S.

A. J. Haes, J. Zhao, S. Zou, C. S. Own, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Solution-phase, triangular Ag nanotriangles fabricated by nanosphere lithography,” J. Phys. Chem. B 109(22), 11158–11162 (2005).
[CrossRef] [PubMed]

Schatz, G. C.

M. G. Blaber, A.-I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR imaging of silver triangular nanoprisms: correlating scattering with structure using electrodynamics for plasmon lifetime analysis,” J. Phys. Chem. C 116(1), 393–403 (2012).
[CrossRef]

A. J. Haes, J. Zhao, S. Zou, C. S. Own, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Solution-phase, triangular Ag nanotriangles fabricated by nanosphere lithography,” J. Phys. Chem. B 109(22), 11158–11162 (2005).
[CrossRef] [PubMed]

Shatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Shatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Tucker, A. W.

H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceedings of 2nd Berkeley Symposium (1951), 481–492.

Van Duyne, R. P.

M. G. Blaber, A.-I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR imaging of silver triangular nanoprisms: correlating scattering with structure using electrodynamics for plasmon lifetime analysis,” J. Phys. Chem. C 116(1), 393–403 (2012).
[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

A. J. Haes, J. Zhao, S. Zou, C. S. Own, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Solution-phase, triangular Ag nanotriangles fabricated by nanosphere lithography,” J. Phys. Chem. B 109(22), 11158–11162 (2005).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).

Vernon, K. C.

D. Mortazavi, A. Z. Kouzani, and K. C. Vernon, “A resonance tunable and durable LSPR nano-particle sensor: Al2O3 capped silver nano-disks,” PIER 130, 429–446 (2012).
[CrossRef]

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10(7), 2618–2625 (2010).
[CrossRef] [PubMed]

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Yin, Y.

C. Gao, Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, and Y. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. Engl. 51(23), 5629–5633 (2012).
[CrossRef] [PubMed]

Zhang, Q.

C. Gao, Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, and Y. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. Engl. 51(23), 5629–5633 (2012).
[CrossRef] [PubMed]

Zhang, Z.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

Zhao, J.

A. J. Haes, J. Zhao, S. Zou, C. S. Own, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Solution-phase, triangular Ag nanotriangles fabricated by nanosphere lithography,” J. Phys. Chem. B 109(22), 11158–11162 (2005).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Shatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zhu, S.

S. Zhu, F. Li, C. Du, and Y. Fu, “Novel bio-nanochip based on localized surface plasmonresonance spectroscopy of rhombic nanoparticles,” Nanomedicine 3(5), 669–677 (2008).
[CrossRef] [PubMed]

Zou, S.

A. J. Haes, J. Zhao, S. Zou, C. S. Own, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Solution-phase, triangular Ag nanotriangles fabricated by nanosphere lithography,” J. Phys. Chem. B 109(22), 11158–11162 (2005).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl.

C. Gao, Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, and Y. Yin, “Highly stable silver nanoplates for surface plasmon resonance biosensing,” Angew. Chem. Int. Ed. Engl. 51(23), 5629–5633 (2012).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Biomicrofluidics

M. Altissimo, “E-beam lithography for micro-nanofabrication,” Biomicrofluidics 4(2), 026503 (2010).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).

J. Electromagn. Waves Appl.

D. Mortazavi, A. Z. Kouzani, L. Matekovits, and W. Duan, “Localized surface plasmon resonance: nano-sinusoid arrays,” J. Electromagn. Waves Appl. 27, 638–648 (2013).

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Shatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[CrossRef]

A. J. Haes, J. Zhao, S. Zou, C. S. Own, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Solution-phase, triangular Ag nanotriangles fabricated by nanosphere lithography,” J. Phys. Chem. B 109(22), 11158–11162 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. C

M. G. Blaber, A.-I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR imaging of silver triangular nanoprisms: correlating scattering with structure using electrodynamics for plasmon lifetime analysis,” J. Phys. Chem. C 116(1), 393–403 (2012).
[CrossRef]

Nano Lett.

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10(7), 2618–2625 (2010).
[CrossRef] [PubMed]

S. J. Barrow, A. M. Funston, D. E. Gómez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11(10), 4180–4187 (2011).
[CrossRef] [PubMed]

Nanomedicine

S. Zhu, F. Li, C. Du, and Y. Fu, “Novel bio-nanochip based on localized surface plasmonresonance spectroscopy of rhombic nanoparticles,” Nanomedicine 3(5), 669–677 (2008).
[CrossRef] [PubMed]

Phys. Rev. B

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

PIER

D. Mortazavi, A. Z. Kouzani, A. Kaynak, and W. Duan, “Developing LSPR design guidlines,” PIER 126, 203–235 (2012).
[CrossRef]

D. Mortazavi, A. Z. Kouzani, and L. Matekovits, “Evolution towards a new LSPR particle: Nano-sinusoid,” PIER 132, 199–213 (2012).
[CrossRef]

D. Mortazavi, A. Z. Kouzani, and K. C. Vernon, “A resonance tunable and durable LSPR nano-particle sensor: Al2O3 capped silver nano-disks,” PIER 130, 429–446 (2012).
[CrossRef]

Other

D. Mortazavi, A.Z. Kouzani, and A. Kaynak, “Investigating nanoparticle-substrate interaction in LSPR biosensing using the image-charge theory,” in EMBC'12, San Diego, USA, August (2012).

D. Mortazavi, A. Z. Kouzani, and L. Matekovits, “Investigation on localized surface plasmon resonance of different nano–particles for bio-sensor applications,” in ICEAA'12, Cape Town, South Africa (2012).

G. W. Snedecor and W. G. Cochran, Statistical Methods, 8th ed. (Iowa State University, 1980).

Mathworks, Optimization Toolbox, User’s Guide (2012).

H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceedings of 2nd Berkeley Symposium (1951), 481–492.

D. Mortazavi, A.Z. Kouzani, Y. Maffinejad, and MD K. Hosain, “Plasmon eignevalues as a function of nano-spheroids size and elongation,” in ICMEA'12, Kobe, Japan, July (2012).

D. Mortazavi, A. Z. Kouzani, and A. Kaynak, “Nano-plasmonic biosensors: A review,” in ICMEA'11, Harbin, China (2011).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

G. C. Schatz and R. P. van Duyne, Electromagnetic Mechanism of Surface-Enhanced Spectroscopy (John Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) A single nano-sinusoid, and (b) a nano-sinuoid chain topography.

Fig. 2
Fig. 2

(a) AFM image of nano-triangles fabricated using Nanosphere lithography (NSL) method [14], (b) SEM image of nano-diamonds fabricated using self-assembly monolayer process [15].

Fig. 3
Fig. 3

Nano-fabrication process.

Fig. 4
Fig. 4

Flowchart of the modelling and optimization procedure.

Fig. 5
Fig. 5

Extinction (blue), scattering (red), and absorption (green) cross sections for (a) silver nano-triangles of in-plane width 80 nm, (b) silver nano-diamonds of in-plane width 80 nm, and (c) silver nano-sinusoids of in-plane width 80 nm versus wavelength.

Fig. 6
Fig. 6

Comparison of nano-sinusoids (purple colour) with nano-triangles (red-colour) and nano-diamonds (green colour) in terms of: (a) FWHM, (b) extinction cross section, (c) optimum in-plane width versus plasmon wavelengths, and (d) coupling constant for two NPs of 80 nm in-plane size versus spacing between NPs [16].

Fig. 7
Fig. 7

AFM images of (a) single nano-sinusoid NP, (b) dimensions of the single nano-sinusoid, NP (c) double nano-sinusoid NPs, (d) dimensions of the double nano-sinusoid NPs.

Fig. 8
Fig. 8

Scattering spectrum of (a) a single nano-sinusoid NP with various width of 140, 160, 180and 200 nm; (b) double nano-sinusoid NPS with width of 140 nm and spacing of 35 and 50 nm; (c) triple nano-sinusoid NPs with width of 140 nm and spacing of 35 and 50 nm; (d) multiple nano-sinusoid NPs with width of 140 nm and spacing of 50 nm; caught by dark fild microscopy.

Fig. 9
Fig. 9

Dipolar resonance wavelength of (a) single nano-sinusoids against their size for real data (blue) and simulated data(red), (b) synthesised nano-triangles by Jin et al. [26].

Fig. 10
Fig. 10

Multi nano-sinusoids against chain length for in-plane width of 140 nm and spacing of 50 nm (blue), width of 140 nm and spacing of 35 nm (orange), width of 180 nm and spacing of 50 nm (green), and width of 180 nm and spacing of 35 nm (brown).

Fig. 11
Fig. 11

3D representation of the FWHM variations against (a) (thickness, in-plane width) for spacing of 33 nm and chain_no of 2, and (b) (spacing, chain_no) for thickness of 35 nm and in-plane width of 138 nm.

Fig. 12
Fig. 12

3D representation of the resonance wavelength variations against (a) (thickness, in-plane width) for spacing of 29 nm and chain_no of 3, and (b) (spacing, chain_no) for thickness of 13 nm and in-plane width of 126 nm.

Fig. 13
Fig. 13

3D representation of the extinction cross section variations against (a) (thickness, in-plane width) for spacing of 31 nm and chain_no of 3, and (b) (spacing, chain_no) for thickness of 20 nm and in-plane width of 111 nm. The value 1000 m2 shows that the vertical axes of the graphs have been down scaled by 1000. The ECS values actually range from around 50,000 to 300,000 m2.

Fig. 14
Fig. 14

(a) Resonance wavelength and (b) FWHM calculated by FDTD (green), RSM (blue) modelling, and fabricated NPs (red) for an optimized set of physical dimensions for given target wavelength and FWHM vales for single nano-particles. The reference line is shown in green colour.

Tables (1)

Tables Icon

Table 1 Input/output data sets.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

c = ( 1 Λ 1 γ ) . π cos ( π N + 1 )
  | x | = | s ( y ) | = M   sin ( y π w π 2 )   f o r   w 2 y w 2

Metrics