Abstract

The recent concept of metasurfaces is a powerful tool to shape waves by governing precisely the phase response of each constituting element through its resonance properties. While most efforts are devoted to realize reconfigurable metasurfaces that allow such complete phase control, for many applications a binary one is sufficient. Here, we propose and demonstrate through experiments and simulations a binary state tunable phase reflector based on the concept of hybridized resonators as unit cell for a possible metasurface. The concept presents the great advantages to be very general, scalable to all frequency domains and above all very robust to fluctuations induced by the tunable mechanism, as we prove it at microwave frequencies using electronically tunable patch reflectors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
    [CrossRef]
  2. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6(5), 283–292 (2012).
    [CrossRef]
  3. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
    [CrossRef] [PubMed]
  4. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [CrossRef] [PubMed]
  5. J. Huang and J. A. Encinar, Reflectarray Antennas (John Wiley, 2007).
  6. T. H. Hand and S. A. Cummer, “Reconfigurable reflectarray using addressable metamaterials,” IEEE Antennas Wirel. Propag. Lett. 9, 70–74 (2010).
    [CrossRef]
  7. S. V. Hum and J. Perruisseau-carrier, “'Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review,” IEEE Trans. Antennas Propag. 62(1), 183–198 (2014).
    [CrossRef]
  8. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [CrossRef] [PubMed]
  9. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
    [CrossRef]
  10. B. O. Zhu, J. Zhao, and Y. Feng, “Active impedance metasurface with full 360° reflection phase tuning,” Sci. Rep. 3, 3059 (2013).
  11. S. N. Burokur, J. P. Daniel, P. Ratajczak, and A. De Lustrac, “Tunable bilayered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97(6), 064101 (2010).
    [CrossRef]
  12. H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524 (2011).
    [CrossRef]
  13. D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
    [CrossRef] [PubMed]
  14. C. Della Giovampaola and N. Engheta, “Digital Metamaterials,” http://arxiv.org/abs/1403.6488 .
  15. R. Abdeddaim, A. Ourir, and J. de Rosny, “Realizing a negative index metamaterial by controlling hybridization of trapped modes,” Phys. Rev. B 83(3), 033101 (2011).
    [CrossRef]
  16. C. Kittel, Introduction to Solid State Physics (Wiley, 1996).
  17. N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping microwave fields in scattering and reverberating media with binary tunable metasurfaces,” submitted.
  18. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
    [CrossRef] [PubMed]
  19. G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
    [CrossRef] [PubMed]

2014 (2)

S. V. Hum and J. Perruisseau-carrier, “'Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review,” IEEE Trans. Antennas Propag. 62(1), 183–198 (2014).
[CrossRef]

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[CrossRef] [PubMed]

2013 (2)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[CrossRef] [PubMed]

B. O. Zhu, J. Zhao, and Y. Feng, “Active impedance metasurface with full 360° reflection phase tuning,” Sci. Rep. 3, 3059 (2013).

2012 (3)

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[CrossRef]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6(5), 283–292 (2012).
[CrossRef]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

2011 (5)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[CrossRef]

H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524 (2011).
[CrossRef]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
[CrossRef] [PubMed]

R. Abdeddaim, A. Ourir, and J. de Rosny, “Realizing a negative index metamaterial by controlling hybridization of trapped modes,” Phys. Rev. B 83(3), 033101 (2011).
[CrossRef]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[CrossRef] [PubMed]

2010 (3)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

T. H. Hand and S. A. Cummer, “Reconfigurable reflectarray using addressable metamaterials,” IEEE Antennas Wirel. Propag. Lett. 9, 70–74 (2010).
[CrossRef]

S. N. Burokur, J. P. Daniel, P. Ratajczak, and A. De Lustrac, “Tunable bilayered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97(6), 064101 (2010).
[CrossRef]

Abdeddaim, R.

R. Abdeddaim, A. Ourir, and J. de Rosny, “Realizing a negative index metamaterial by controlling hybridization of trapped modes,” Phys. Rev. B 83(3), 033101 (2011).
[CrossRef]

Aieta, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[CrossRef]

Akbulut, D.

Aulbach, J.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[CrossRef] [PubMed]

Bauhuis, G. J.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[CrossRef] [PubMed]

Bernet, S.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[CrossRef]

Blanchard, R.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[CrossRef]

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[CrossRef] [PubMed]

Burokur, S. N.

S. N. Burokur, J. P. Daniel, P. Ratajczak, and A. De Lustrac, “Tunable bilayered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97(6), 064101 (2010).
[CrossRef]

Capasso, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[CrossRef]

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Chilkoti, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Ciracì, C.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Cummer, S. A.

T. H. Hand and S. A. Cummer, “Reconfigurable reflectarray using addressable metamaterials,” IEEE Antennas Wirel. Propag. Lett. 9, 70–74 (2010).
[CrossRef]

Daniel, J. P.

S. N. Burokur, J. P. Daniel, P. Ratajczak, and A. De Lustrac, “Tunable bilayered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97(6), 064101 (2010).
[CrossRef]

De Lustrac, A.

S. N. Burokur, J. P. Daniel, P. Ratajczak, and A. De Lustrac, “Tunable bilayered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97(6), 064101 (2010).
[CrossRef]

de Rosny, J.

R. Abdeddaim, A. Ourir, and J. de Rosny, “Realizing a negative index metamaterial by controlling hybridization of trapped modes,” Phys. Rev. B 83(3), 033101 (2011).
[CrossRef]

Dupré, M.

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping microwave fields in scattering and reverberating media with binary tunable metasurfaces,” submitted.

Feng, Y.

B. O. Zhu, J. Zhao, and Y. Feng, “Active impedance metasurface with full 360° reflection phase tuning,” Sci. Rep. 3, 3059 (2013).

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6(5), 283–292 (2012).
[CrossRef]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping microwave fields in scattering and reverberating media with binary tunable metasurfaces,” submitted.

Gaburro, Z.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[CrossRef]

Genevet, P.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[CrossRef]

Georgiou, G.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[CrossRef] [PubMed]

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Gjonaj, B.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[CrossRef] [PubMed]

Hand, T. H.

T. H. Hand and S. A. Cummer, “Reconfigurable reflectarray using addressable metamaterials,” IEEE Antennas Wirel. Propag. Lett. 9, 70–74 (2010).
[CrossRef]

Hashimoto, O.

H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524 (2011).
[CrossRef]

Hill, R. T.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Huisman, T. J.

Hum, S. V.

S. V. Hum and J. Perruisseau-carrier, “'Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review,” IEEE Trans. Antennas Propag. 62(1), 183–198 (2014).
[CrossRef]

Iwasaki, T.

H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524 (2011).
[CrossRef]

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[CrossRef]

Johnson, P. M.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[CrossRef] [PubMed]

Kaina, N.

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping microwave fields in scattering and reverberating media with binary tunable metasurfaces,” submitted.

Kamoda, H.

H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524 (2011).
[CrossRef]

Kats, M. A.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[CrossRef]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[CrossRef] [PubMed]

Kuki, T.

H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524 (2011).
[CrossRef]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6(5), 283–292 (2012).
[CrossRef]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[CrossRef] [PubMed]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6(5), 283–292 (2012).
[CrossRef]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping microwave fields in scattering and reverberating media with binary tunable metasurfaces,” submitted.

Lin, J.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[CrossRef]

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[CrossRef]

Mock, J. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Moreau, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6(5), 283–292 (2012).
[CrossRef]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[CrossRef] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
[CrossRef] [PubMed]

Mulder, P.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[CrossRef] [PubMed]

Ourir, A.

R. Abdeddaim, A. Ourir, and J. de Rosny, “Realizing a negative index metamaterial by controlling hybridization of trapped modes,” Phys. Rev. B 83(3), 033101 (2011).
[CrossRef]

Perruisseau-carrier, J.

S. V. Hum and J. Perruisseau-carrier, “'Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review,” IEEE Trans. Antennas Propag. 62(1), 183–198 (2014).
[CrossRef]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Ratajczak, P.

S. N. Burokur, J. P. Daniel, P. Ratajczak, and A. De Lustrac, “Tunable bilayered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97(6), 064101 (2010).
[CrossRef]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[CrossRef]

Rivas, J. G.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[CrossRef] [PubMed]

Schermer, J. J.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[CrossRef] [PubMed]

Scully, M. O.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[CrossRef]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[CrossRef] [PubMed]

Smith, D. R.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Tsumochi, J.

H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524 (2011).
[CrossRef]

Tyagi, H. K.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[CrossRef] [PubMed]

van Putten, E. G.

Vos, W. L.

Wang, Q.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Wiley, B. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Yu, N.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[CrossRef]

Zhao, J.

B. O. Zhu, J. Zhao, and Y. Feng, “Active impedance metasurface with full 360° reflection phase tuning,” Sci. Rep. 3, 3059 (2013).

Zhu, B. O.

B. O. Zhu, J. Zhao, and Y. Feng, “Active impedance metasurface with full 360° reflection phase tuning,” Sci. Rep. 3, 3059 (2013).

Appl. Phys. Lett. (2)

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[CrossRef]

S. N. Burokur, J. P. Daniel, P. Ratajczak, and A. De Lustrac, “Tunable bilayered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97(6), 064101 (2010).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett. (1)

T. H. Hand and S. A. Cummer, “Reconfigurable reflectarray using addressable metamaterials,” IEEE Antennas Wirel. Propag. Lett. 9, 70–74 (2010).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

S. V. Hum and J. Perruisseau-carrier, “'Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review,” IEEE Trans. Antennas Propag. 62(1), 183–198 (2014).
[CrossRef]

H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Trans. Antennas Propag. 59(7), 2524 (2011).
[CrossRef]

Laser Photon. Rev. (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[CrossRef]

Nat. Photon. (1)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6(5), 283–292 (2012).
[CrossRef]

Nature (1)

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

R. Abdeddaim, A. Ourir, and J. de Rosny, “Realizing a negative index metamaterial by controlling hybridization of trapped modes,” Phys. Rev. B 83(3), 033101 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106(10), 103901 (2011).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Sci. Rep. (2)

B. O. Zhu, J. Zhao, and Y. Feng, “Active impedance metasurface with full 360° reflection phase tuning,” Sci. Rep. 3, 3059 (2013).

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[CrossRef] [PubMed]

Science (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[CrossRef] [PubMed]

Other (4)

J. Huang and J. A. Encinar, Reflectarray Antennas (John Wiley, 2007).

C. Kittel, Introduction to Solid State Physics (Wiley, 1996).

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, “Shaping microwave fields in scattering and reverberating media with binary tunable metasurfaces,” submitted.

C. Della Giovampaola and N. Engheta, “Digital Metamaterials,” http://arxiv.org/abs/1403.6488 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of the resonance states (orange box) of the binary phase pixel made out of two monomers: a static reflector and a tunable parasitic resonator (resp. red and grey in the yellow boxes) for the π-state (a) and the 0-state (b). The red dotted line represents the operating frequency f0. In the π -state, the eigenfrequencies of the system are monomers while in the 0-state they are hybridized dimers.

Fig. 2
Fig. 2

(a) Simulation set-up with boundary conditions (b) Cell design (c) Map of the eigenfrequencies (as 1-|S11|) of the system while varying the length of the upper edge of the parasitic strip (L) (d) Simulated reflection in dB for L = 0 mm (solid black line) and L = 7 mm (dotted black line).

Fig. 3
Fig. 3

(a) Picture of the experimental cell. (b). Scheme of the experimental cell with dimensions: the rectangular static patch (main) reflector (black) and the binary tunable parasitic strip (parasitic reflector) (grey). (c). Scheme of the experimental set-up.

Fig. 4
Fig. 4

Experimental logarithmic reflection coefficient (a) and phase of the reflection coefficient (b) of the unit cell in both 0-state and π-state.

Fig. 5
Fig. 5

(a) Experimental phase difference of the reflected waves between the 0-state and π-state. (b) Enlargement of (a) around the operating frequency f0. (c) Simulated E-field angular response of the unit cell in the resonant π-state with the color level displayed in logarithmic scale (dBV/m) and the (x,y,z) geometrical directivity in linear scale (V/m). (d) Polar representation (E in linear scale) in the patch plane (θ = 90° and θ = 0°) and correspondence with the unit cell dimensions (up).

Metrics