A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: When less is more,” Phys. Rev. X 4, 011031 (2014).

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: Understanding quantum weak values: Basics and applications,” Rev. Mod. Phys. 86, 307 (2014).

[CrossRef]

J. Z. Salvail, M. Agnew, A. S. Johnson, E. Bolduc, J. Leach, and R. W. Boyd, “Full characterization of polarization states of light via direct measurement,” Nat. Photonics 7, 316–321 (2013).

[CrossRef]

G. A. Howland and J. C. Howell, “Efficient high-dimensional entanglement imaging with a compressive-sensing double-pixel camera,” Phys. Rev. X 3, 011013 (2013).

G. A. Howland, D. J. Lum, M. R. Ware, and J. C. Howell, “Photon counting compressive depth mapping,” Opt. Express 21, 23822–23837 (2013).

[CrossRef]
[PubMed]

J. Dressel and A. Jordan, “Significance of the imaginary part of the weak value,” Phys. Rev. A 85, 012107 (2012).

[CrossRef]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]
[PubMed]

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wave-function,” Nature (London) 474, 188–191 (2011).

[CrossRef]

J. C. Howell, D. J. Starling, P. B. Dixon, P. K. Vudyasetu, and A. N. Jordan, “Interferometric weak value deflections: Quantum and classical treatments,” Phys. Rev. A 81, 033813 (2010).

[CrossRef]

D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” Phys. Rev. Lett. 105, 150401 (2010).

[CrossRef]

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009).

[CrossRef]
[PubMed]

J. Lundeen and A. Steinberg, “Experimental joint weak measurement on a photon pair as a probe of hardys paradox,” Phys. Rev. Lett. 102, 020404 (2009).

[CrossRef]

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319, 787–790 (2008).

[CrossRef]
[PubMed]

R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 83, 914730 (2008).

J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed sensing in astronomy,” IEEE J. Sel. Top. Signa. 2, 718–726 (2008).

[CrossRef]

E. J. Candes, “The restricted isometry property and its implications for compressed sensing,” C. R. Math. 346, 589–592 (2008).

[CrossRef]

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Proc. Mag. 25, 21–30 (2008).

[CrossRef]

J. Romberg, “Imaging via compressive sampling [introduction to compressive sampling and recovery via convex programming],” IEEE Signal Proc. Mag. 25, 14–20 (2008).

[CrossRef]

M. J. Booth, “Adaptive optics in microscopy,” Philos. T. R. Soc. A 365, 2829–2843 (2007).

[CrossRef]

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. 1, 586–597 (2007).

[CrossRef]

J. D. Hunter, “Matplotlib: A 2D graphics environment,” IEEE Comput. Sci. Eng. 9, 90–95 (2007).

[CrossRef]

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 1182–1195 (2007).

[CrossRef]
[PubMed]

E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Trans. Inform. Theory 52, 5406–5425 (2006).

[CrossRef]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory 52, 1289–1306 (2006).

[CrossRef]

M. Levoy, “Light fields and computational imaging,” IEEE Comput. 39, 46–55 (2006).

[CrossRef]

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).

[PubMed]

L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optometry Vision Sci. 76, 817–825 (1999).

[CrossRef]

A. Chambolle and P.-L. Lions, “Image recovery via total variation minimization and related problems,” Numer. Math. 76, 167–188 (1997).

[CrossRef]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).

[CrossRef]
[PubMed]

J. Z. Salvail, M. Agnew, A. S. Johnson, E. Bolduc, J. Leach, and R. W. Boyd, “Full characterization of polarization states of light via direct measurement,” Nat. Photonics 7, 316–321 (2013).

[CrossRef]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).

[CrossRef]
[PubMed]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).

[CrossRef]
[PubMed]

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wave-function,” Nature (London) 474, 188–191 (2011).

[CrossRef]

R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 83, 914730 (2008).

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” Phys. Rev. Lett. 105, 150401 (2010).

[CrossRef]

J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed sensing in astronomy,” IEEE J. Sel. Top. Signa. 2, 718–726 (2008).

[CrossRef]

J. Z. Salvail, M. Agnew, A. S. Johnson, E. Bolduc, J. Leach, and R. W. Boyd, “Full characterization of polarization states of light via direct measurement,” Nat. Photonics 7, 316–321 (2013).

[CrossRef]

M. J. Booth, “Adaptive optics in microscopy,” Philos. T. R. Soc. A 365, 2829–2843 (2007).

[CrossRef]

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: Understanding quantum weak values: Basics and applications,” Rev. Mod. Phys. 86, 307 (2014).

[CrossRef]

J. Z. Salvail, M. Agnew, A. S. Johnson, E. Bolduc, J. Leach, and R. W. Boyd, “Full characterization of polarization states of light via direct measurement,” Nat. Photonics 7, 316–321 (2013).

[CrossRef]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]
[PubMed]

E. J. Candes, “The restricted isometry property and its implications for compressed sensing,” C. R. Math. 346, 589–592 (2008).

[CrossRef]

E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Trans. Inform. Theory 52, 5406–5425 (2006).

[CrossRef]

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Proc. Mag. 25, 21–30 (2008).

[CrossRef]

A. Chambolle and P.-L. Lions, “Image recovery via total variation minimization and related problems,” Numer. Math. 76, 167–188 (1997).

[CrossRef]

J. C. Howell, D. J. Starling, P. B. Dixon, P. K. Vudyasetu, and A. N. Jordan, “Interferometric weak value deflections: Quantum and classical treatments,” Phys. Rev. A 81, 033813 (2010).

[CrossRef]

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009).

[CrossRef]
[PubMed]

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 1182–1195 (2007).

[CrossRef]
[PubMed]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory 52, 1289–1306 (2006).

[CrossRef]

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: Understanding quantum weak values: Basics and applications,” Rev. Mod. Phys. 86, 307 (2014).

[CrossRef]

J. Dressel and A. Jordan, “Significance of the imaginary part of the weak value,” Phys. Rev. A 85, 012107 (2012).

[CrossRef]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” Phys. Rev. Lett. 105, 150401 (2010).

[CrossRef]

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. 1, 586–597 (2007).

[CrossRef]

D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” Phys. Rev. Lett. 105, 150401 (2010).

[CrossRef]

J. Goodman, Introduction to Fourier Optics (Roberts and Company, 2008).

D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” Phys. Rev. Lett. 105, 150401 (2010).

[CrossRef]

L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optometry Vision Sci. 76, 817–825 (1999).

[CrossRef]

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319, 787–790 (2008).

[CrossRef]
[PubMed]

A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: When less is more,” Phys. Rev. X 4, 011031 (2014).

G. A. Howland and J. C. Howell, “Efficient high-dimensional entanglement imaging with a compressive-sensing double-pixel camera,” Phys. Rev. X 3, 011013 (2013).

G. A. Howland, D. J. Lum, M. R. Ware, and J. C. Howell, “Photon counting compressive depth mapping,” Opt. Express 21, 23822–23837 (2013).

[CrossRef]
[PubMed]

J. C. Howell, D. J. Starling, P. B. Dixon, P. K. Vudyasetu, and A. N. Jordan, “Interferometric weak value deflections: Quantum and classical treatments,” Phys. Rev. A 81, 033813 (2010).

[CrossRef]

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009).

[CrossRef]
[PubMed]

J. D. Hunter, “Matplotlib: A 2D graphics environment,” IEEE Comput. Sci. Eng. 9, 90–95 (2007).

[CrossRef]

J. Z. Salvail, M. Agnew, A. S. Johnson, E. Bolduc, J. Leach, and R. W. Boyd, “Full characterization of polarization states of light via direct measurement,” Nat. Photonics 7, 316–321 (2013).

[CrossRef]

J. Dressel and A. Jordan, “Significance of the imaginary part of the weak value,” Phys. Rev. A 85, 012107 (2012).

[CrossRef]

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: Understanding quantum weak values: Basics and applications,” Rev. Mod. Phys. 86, 307 (2014).

[CrossRef]

A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: When less is more,” Phys. Rev. X 4, 011031 (2014).

J. C. Howell, D. J. Starling, P. B. Dixon, P. K. Vudyasetu, and A. N. Jordan, “Interferometric weak value deflections: Quantum and classical treatments,” Phys. Rev. A 81, 033813 (2010).

[CrossRef]

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009).

[CrossRef]
[PubMed]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]
[PubMed]

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319, 787–790 (2008).

[CrossRef]
[PubMed]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

J. Z. Salvail, M. Agnew, A. S. Johnson, E. Bolduc, J. Leach, and R. W. Boyd, “Full characterization of polarization states of light via direct measurement,” Nat. Photonics 7, 316–321 (2013).

[CrossRef]

M. Levoy, “Light fields and computational imaging,” IEEE Comput. 39, 46–55 (2006).

[CrossRef]

C. Li, W. Yin, and Y. Zhang, “Users guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms,” CAAM Report (2009).

C. Li, “Compressive sensing for 3D data processing tasks: applications, models and algorithms,” Ph.D. thesis, Rice University (2011).

A. Chambolle and P.-L. Lions, “Image recovery via total variation minimization and related problems,” Numer. Math. 76, 167–188 (1997).

[CrossRef]

D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” Phys. Rev. Lett. 105, 150401 (2010).

[CrossRef]

J. Lundeen and A. Steinberg, “Experimental joint weak measurement on a photon pair as a probe of hardys paradox,” Phys. Rev. Lett. 102, 020404 (2009).

[CrossRef]

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wave-function,” Nature (London) 474, 188–191 (2011).

[CrossRef]

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 1182–1195 (2007).

[CrossRef]
[PubMed]

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: Understanding quantum weak values: Basics and applications,” Rev. Mod. Phys. 86, 307 (2014).

[CrossRef]

A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: When less is more,” Phys. Rev. X 4, 011031 (2014).

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: Understanding quantum weak values: Basics and applications,” Rev. Mod. Phys. 86, 307 (2014).

[CrossRef]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]
[PubMed]

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. 1, 586–597 (2007).

[CrossRef]

J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed sensing in astronomy,” IEEE J. Sel. Top. Signa. 2, 718–726 (2008).

[CrossRef]

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wave-function,” Nature (London) 474, 188–191 (2011).

[CrossRef]

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 1182–1195 (2007).

[CrossRef]
[PubMed]

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).

[PubMed]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]
[PubMed]

F. Roddier, Adaptive Optics in Astronomy (Cambridge university press, 1999).

[CrossRef]

J. Romberg, “Imaging via compressive sampling [introduction to compressive sampling and recovery via convex programming],” IEEE Signal Proc. Mag. 25, 14–20 (2008).

[CrossRef]

J. Z. Salvail, M. Agnew, A. S. Johnson, E. Bolduc, J. Leach, and R. W. Boyd, “Full characterization of polarization states of light via direct measurement,” Nat. Photonics 7, 316–321 (2013).

[CrossRef]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).

[PubMed]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]
[PubMed]

J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed sensing in astronomy,” IEEE J. Sel. Top. Signa. 2, 718–726 (2008).

[CrossRef]

J. C. Howell, D. J. Starling, P. B. Dixon, P. K. Vudyasetu, and A. N. Jordan, “Interferometric weak value deflections: Quantum and classical treatments,” Phys. Rev. A 81, 033813 (2010).

[CrossRef]

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009).

[CrossRef]
[PubMed]

J. Lundeen and A. Steinberg, “Experimental joint weak measurement on a photon pair as a probe of hardys paradox,” Phys. Rev. Lett. 102, 020404 (2009).

[CrossRef]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]
[PubMed]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]
[PubMed]

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wave-function,” Nature (London) 474, 188–191 (2011).

[CrossRef]

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wave-function,” Nature (London) 474, 188–191 (2011).

[CrossRef]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Trans. Inform. Theory 52, 5406–5425 (2006).

[CrossRef]

L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optometry Vision Sci. 76, 817–825 (1999).

[CrossRef]

R. Tyson, Principles of Adaptive Optics (CRC Press, 2010).

[CrossRef]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).

[CrossRef]
[PubMed]

J. C. Howell, D. J. Starling, P. B. Dixon, P. K. Vudyasetu, and A. N. Jordan, “Interferometric weak value deflections: Quantum and classical treatments,” Phys. Rev. A 81, 033813 (2010).

[CrossRef]

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Proc. Mag. 25, 21–30 (2008).

[CrossRef]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. 1, 586–597 (2007).

[CrossRef]

C. Li, W. Yin, and Y. Zhang, “Users guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms,” CAAM Report (2009).

C. Li, W. Yin, and Y. Zhang, “Users guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms,” CAAM Report (2009).

E. J. Candes, “The restricted isometry property and its implications for compressed sensing,” C. R. Math. 346, 589–592 (2008).

[CrossRef]

M. Levoy, “Light fields and computational imaging,” IEEE Comput. 39, 46–55 (2006).

[CrossRef]

J. D. Hunter, “Matplotlib: A 2D graphics environment,” IEEE Comput. Sci. Eng. 9, 90–95 (2007).

[CrossRef]

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. 1, 586–597 (2007).

[CrossRef]

J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed sensing in astronomy,” IEEE J. Sel. Top. Signa. 2, 718–726 (2008).

[CrossRef]

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Proc. Mag. 25, 21–30 (2008).

[CrossRef]

J. Romberg, “Imaging via compressive sampling [introduction to compressive sampling and recovery via convex programming],” IEEE Signal Proc. Mag. 25, 14–20 (2008).

[CrossRef]

R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 83, 914730 (2008).

E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Trans. Inform. Theory 52, 5406–5425 (2006).

[CrossRef]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory 52, 1289–1306 (2006).

[CrossRef]

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).

[PubMed]

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 1182–1195 (2007).

[CrossRef]
[PubMed]

J. Z. Salvail, M. Agnew, A. S. Johnson, E. Bolduc, J. Leach, and R. W. Boyd, “Full characterization of polarization states of light via direct measurement,” Nat. Photonics 7, 316–321 (2013).

[CrossRef]

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wave-function,” Nature (London) 474, 188–191 (2011).

[CrossRef]

A. Chambolle and P.-L. Lions, “Image recovery via total variation minimization and related problems,” Numer. Math. 76, 167–188 (1997).

[CrossRef]

L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optometry Vision Sci. 76, 817–825 (1999).

[CrossRef]

M. J. Booth, “Adaptive optics in microscopy,” Philos. T. R. Soc. A 365, 2829–2843 (2007).

[CrossRef]

J. C. Howell, D. J. Starling, P. B. Dixon, P. K. Vudyasetu, and A. N. Jordan, “Interferometric weak value deflections: Quantum and classical treatments,” Phys. Rev. A 81, 033813 (2010).

[CrossRef]

J. Dressel and A. Jordan, “Significance of the imaginary part of the weak value,” Phys. Rev. A 85, 012107 (2012).

[CrossRef]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).

[CrossRef]
[PubMed]

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification,” Phys. Rev. Lett. 102, 173601 (2009).

[CrossRef]
[PubMed]

J. Lundeen and A. Steinberg, “Experimental joint weak measurement on a photon pair as a probe of hardys paradox,” Phys. Rev. Lett. 102, 020404 (2009).

[CrossRef]

D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” Phys. Rev. Lett. 105, 150401 (2010).

[CrossRef]

G. A. Howland and J. C. Howell, “Efficient high-dimensional entanglement imaging with a compressive-sensing double-pixel camera,” Phys. Rev. X 3, 011013 (2013).

A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: When less is more,” Phys. Rev. X 4, 011031 (2014).

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: Understanding quantum weak values: Basics and applications,” Rev. Mod. Phys. 86, 307 (2014).

[CrossRef]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]
[PubMed]

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319, 787–790 (2008).

[CrossRef]
[PubMed]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

C. Li, “Compressive sensing for 3D data processing tasks: applications, models and algorithms,” Ph.D. thesis, Rice University (2011).

C. Li, W. Yin, and Y. Zhang, “Users guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms,” CAAM Report (2009).

F. Roddier, Adaptive Optics in Astronomy (Cambridge university press, 1999).

[CrossRef]

J. Goodman, Introduction to Fourier Optics (Roberts and Company, 2008).

R. Tyson, Principles of Adaptive Optics (CRC Press, 2010).

[CrossRef]