Abstract

In this study, the optical properties of InAs quantum dots (QDs) with various strain-reducing layers (SRLs) of GaAsSb and InGaAsSb are characterized using photoluminescence (PL) and time-resolved PL (TRPL) measurements. The room-temperature PL results for the InAs/InGaAsSb QDs revealed stronger emission intensities than InAs QDs capped with an GaAs1-xSbx (x = 20%)SRL, although both samples were grown under the same Sb flux during the molecular beam epitaxy process. The InAs/InGaAsSb QDs showed a significant elongation of emission wavelengths to 1450 and 1310 nm for the ground and first-excited state at room temperature. The energy band alignment of the InAs QD heterostructures was found tailoring from type II to type I as the GaAsSb SRL was replaced by InGaAsSb layer, which improved the radiative efficiency and was verified by power-dependent PL and TRPL measurements. Post-growth rapid thermal annealing was applied on the InAs/InGaAsSb QDs to further enhance the QD quality and PL emission efficiency. The greatly improved PL intensity, reduced linewidth, shortened radiative lifetime, with increasing annealing temperature were demonstrated, and InAs/InGaAsSb QDs exhibited enhanced optical characteristics for long-wavelength emission applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939 (1982).
    [CrossRef]
  2. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564 (1998).
    [CrossRef]
  3. K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
    [CrossRef]
  4. B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009).
    [CrossRef]
  5. C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22μm tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011).
    [CrossRef]
  6. M.-H. Mao, L.-C. Su, K.-C. Wang, W.-S. Liu, P.-C. Chiu, and J.-I. Chyi, “Spectrally-resolved dynamics of two-state lasing in quantum-dot lasers,” in IEEE LEOS Conference Proceedings, 39 (2005).
    [CrossRef]
  7. M. A. Majid, D. T. D. Childs, H. Shahid, S. C. Chen, K. Kennedy, R. J. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “Excited state bilayer quantum dot lasers at 1.3 µm,” Jpn. J. Appl. Phys. 50, 04DG10 (2011).
  8. W.-S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 μm InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006).
    [CrossRef]
  9. J. M. Ripalda, D. Granados, Y. González, A. M. Sánchez, S. I. Molina, and J. M. García, “Room temperature emission at 1.6 μm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
    [CrossRef]
  10. M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
    [CrossRef]
  11. G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, “2.0 μm wavelength InAs quantum dashes grown on a GaAs substrate using a metamorphic buffer layer,” Appl. Phys. Lett. 84(12), 2058 (2004).
  12. M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva, and J. R. Leite, “InAs/GaAs quantum dots optically active at 1.5 μm,” Appl. Phys. Lett. 82(16), 2646 (2003).
    [CrossRef]
  13. J. Tatebayashi, M. Nishioka, and Y. Arakawa, “Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 78(22), 3469 (2001).
    [CrossRef]
  14. W.-S. Liu and J. I. Chyi, “Optical properties of InAs quantum dots with InAlAs/InGaAs composite matrix,” J. Appl. Phys. 97(2), 024312 (2005).
    [CrossRef]
  15. W.-S. Liu, “Enhancing device characteristics of 1.3 μm emitting InAs/GaAs quantum dot lasers through dot-height uniformity study,” J. Alloy. Comp. 571, 153–158 (2013).
    [CrossRef]
  16. K. Akahane, N. Yamamoto, and N. Ohtani, “Long-wavelength light emission from InAs quantum dots covered by GaAsSb grown on GaAs substrates,” Physica E 21(2–4), 295–299 (2004).
    [CrossRef]
  17. W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013).
    [CrossRef]
  18. D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs(1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007).
    [CrossRef]
  19. D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
    [CrossRef]
  20. W.-S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
    [CrossRef]
  21. J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
    [CrossRef]
  22. J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guz-mán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
    [CrossRef]
  23. H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
    [CrossRef]
  24. J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, L. R. Dawson, G. Balakrishnan, and D. L. Huffaker, “Formation and optical characteristics of strain-relieved and densely stacked GaSb/GaAs quantum dots,” Appl. Phys. Lett. 89(20), 203116 (2006).
    [CrossRef]
  25. J. S. Ng, H. Y. Liu, M. J. Steer, M. Hopkinson, and J. P. R. David, “Photoluminescence beyond 1.5 μm from InAs quantum dots,” Microelectron. J. 37(12), 1468–1470 (2006).
    [CrossRef]
  26. H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6 μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” J. Appl. Phys. 99(4), 046104 (2006).
    [CrossRef]
  27. C. Y. Jin, H. Y. Liu, S. Y. Zhang, Q. Jiang, S. L. Liew, M. Hopkinson, T. J. Badcock, E. Nabavi, and D. J. Mowbray, “Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 91(2), 021102 (2007).
    [CrossRef]
  28. W.-S. Liu, D. M.-T. Kuo, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).
  29. W.-S. Liu and C.-M. Chang, “Capping InAs quantum dots with an InGaAsSb strain-reducing layer to improve optical properties and dot-size uniformity,” Thin Solid Films, in press (2014).
  30. S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987 (1997).
    [CrossRef]
  31. W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
    [CrossRef]
  32. Y. A. Liao, W. T. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
    [CrossRef]
  33. T. T. Chen, C. L. Cheng, Y. F. Chen, F. Chang, H. Lin, C.-T. Wu, and C.-H. Chen, “Unusual optical properties of type-II InAs/GaAs0.7Sb0.3 quantum dots by photoluminescence studies,” Phys. Rev. B 75(3), 033310 (2007).
    [CrossRef]
  34. K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).
  35. M. P. C. M. Krijn, “Heterojunction band offsets and effective masses in III-V quaternary alloys,” Semicond. Sci. Technol. 6(1), 27–31 (1991).
    [CrossRef]
  36. M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters (World Scientific, 1996), Vols. 1 and 2.
  37. K.Y. Ban, S. N. Dahal, L. Nataraj, S. P. Bremner, S. G. Cloutier, and C. B. Honsberg, “Room temperature capacitance-voltage profile and photoluminescence for delta doped InGaAs single quantum well,” J. Vac. Sci. Technol. B 28, C3I6 (2010).
  38. W. T. Hsu, Y. A. Liao, S. K. Lu, S. J. Cheng, P. C. Chiu, J. I. Chyi, and W. H. Cheng, “Tailoring of the wave function overlaps and the carrier lifetimes in InAs/GaAs1−xSbx type-II quantum dots,” Physica E 42(10), 2524–2528 (2010).
    [CrossRef]
  39. H. J. Park, J. H. Kim, J. J. Yoon, J. S. Son, D. Y. Lee, H. H. Ryu, M. Jeon, and J. Y. Leem, “Step annealing effects on the structural and optical properties of InAs quantum dots grown on GaAs,” J. Cryst. Growth 300(2), 319–323 (2011).
    [CrossRef]
  40. R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
    [CrossRef]
  41. R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, and D. J. H. Cockayne, “Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 69(13), 1888 (1996).
    [CrossRef]
  42. T. M. Hsu, Y. S. Lan, W. H. Chang, N. T. Yeh, and J. I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691 (2000).
    [CrossRef]
  43. S. Sengupta, N. Halder, and S. Chakrabarti, “Effect of post-growth rapid thermal annealing on bilayer InAs/GaAs quantum dot heterostructure grown with very thin spacer thickness,” Mater. Res. Bull. 45(11), 1593–1597 (2010).
    [CrossRef]

2013

W.-S. Liu, “Enhancing device characteristics of 1.3 μm emitting InAs/GaAs quantum dot lasers through dot-height uniformity study,” J. Alloy. Comp. 571, 153–158 (2013).
[CrossRef]

W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013).
[CrossRef]

2012

K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).

2011

H. J. Park, J. H. Kim, J. J. Yoon, J. S. Son, D. Y. Lee, H. H. Ryu, M. Jeon, and J. Y. Leem, “Step annealing effects on the structural and optical properties of InAs quantum dots grown on GaAs,” J. Cryst. Growth 300(2), 319–323 (2011).
[CrossRef]

W.-S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22μm tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011).
[CrossRef]

M. A. Majid, D. T. D. Childs, H. Shahid, S. C. Chen, K. Kennedy, R. J. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “Excited state bilayer quantum dot lasers at 1.3 µm,” Jpn. J. Appl. Phys. 50, 04DG10 (2011).

2010

K.Y. Ban, S. N. Dahal, L. Nataraj, S. P. Bremner, S. G. Cloutier, and C. B. Honsberg, “Room temperature capacitance-voltage profile and photoluminescence for delta doped InGaAs single quantum well,” J. Vac. Sci. Technol. B 28, C3I6 (2010).

W. T. Hsu, Y. A. Liao, S. K. Lu, S. J. Cheng, P. C. Chiu, J. I. Chyi, and W. H. Cheng, “Tailoring of the wave function overlaps and the carrier lifetimes in InAs/GaAs1−xSbx type-II quantum dots,” Physica E 42(10), 2524–2528 (2010).
[CrossRef]

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guz-mán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[CrossRef]

S. Sengupta, N. Halder, and S. Chakrabarti, “Effect of post-growth rapid thermal annealing on bilayer InAs/GaAs quantum dot heterostructure grown with very thin spacer thickness,” Mater. Res. Bull. 45(11), 1593–1597 (2010).
[CrossRef]

2009

Y. A. Liao, W. T. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
[CrossRef]

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009).
[CrossRef]

2008

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

2007

C. Y. Jin, H. Y. Liu, S. Y. Zhang, Q. Jiang, S. L. Liew, M. Hopkinson, T. J. Badcock, E. Nabavi, and D. J. Mowbray, “Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 91(2), 021102 (2007).
[CrossRef]

T. T. Chen, C. L. Cheng, Y. F. Chen, F. Chang, H. Lin, C.-T. Wu, and C.-H. Chen, “Unusual optical properties of type-II InAs/GaAs0.7Sb0.3 quantum dots by photoluminescence studies,” Phys. Rev. B 75(3), 033310 (2007).
[CrossRef]

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[CrossRef]

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs(1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007).
[CrossRef]

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[CrossRef]

2006

W.-S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 μm InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006).
[CrossRef]

W.-S. Liu, D. M.-T. Kuo, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).

J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, L. R. Dawson, G. Balakrishnan, and D. L. Huffaker, “Formation and optical characteristics of strain-relieved and densely stacked GaSb/GaAs quantum dots,” Appl. Phys. Lett. 89(20), 203116 (2006).
[CrossRef]

J. S. Ng, H. Y. Liu, M. J. Steer, M. Hopkinson, and J. P. R. David, “Photoluminescence beyond 1.5 μm from InAs quantum dots,” Microelectron. J. 37(12), 1468–1470 (2006).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6 μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” J. Appl. Phys. 99(4), 046104 (2006).
[CrossRef]

2005

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

W.-S. Liu and J. I. Chyi, “Optical properties of InAs quantum dots with InAlAs/InGaAs composite matrix,” J. Appl. Phys. 97(2), 024312 (2005).
[CrossRef]

J. M. Ripalda, D. Granados, Y. González, A. M. Sánchez, S. I. Molina, and J. M. García, “Room temperature emission at 1.6 μm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[CrossRef]

2004

K. Akahane, N. Yamamoto, and N. Ohtani, “Long-wavelength light emission from InAs quantum dots covered by GaAsSb grown on GaAs substrates,” Physica E 21(2–4), 295–299 (2004).
[CrossRef]

G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, “2.0 μm wavelength InAs quantum dashes grown on a GaAs substrate using a metamorphic buffer layer,” Appl. Phys. Lett. 84(12), 2058 (2004).

2003

M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva, and J. R. Leite, “InAs/GaAs quantum dots optically active at 1.5 μm,” Appl. Phys. Lett. 82(16), 2646 (2003).
[CrossRef]

2001

J. Tatebayashi, M. Nishioka, and Y. Arakawa, “Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 78(22), 3469 (2001).
[CrossRef]

2000

T. M. Hsu, Y. S. Lan, W. H. Chang, N. T. Yeh, and J. I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691 (2000).
[CrossRef]

1999

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[CrossRef]

1998

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564 (1998).
[CrossRef]

R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
[CrossRef]

1997

S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987 (1997).
[CrossRef]

1996

R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, and D. J. H. Cockayne, “Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 69(13), 1888 (1996).
[CrossRef]

1991

M. P. C. M. Krijn, “Heterojunction band offsets and effective masses in III-V quaternary alloys,” Semicond. Sci. Technol. 6(1), 27–31 (1991).
[CrossRef]

1982

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939 (1982).
[CrossRef]

Airey, R. J.

M. A. Majid, D. T. D. Childs, H. Shahid, S. C. Chen, K. Kennedy, R. J. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “Excited state bilayer quantum dot lasers at 1.3 µm,” Jpn. J. Appl. Phys. 50, 04DG10 (2011).

Akahane, K.

K. Akahane, N. Yamamoto, and N. Ohtani, “Long-wavelength light emission from InAs quantum dots covered by GaAsSb grown on GaAs substrates,” Physica E 21(2–4), 295–299 (2004).
[CrossRef]

Alferov, Zh. I.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Arakawa, Y.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[CrossRef]

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs(1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007).
[CrossRef]

J. Tatebayashi, M. Nishioka, and Y. Arakawa, “Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 78(22), 3469 (2001).
[CrossRef]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939 (1982).
[CrossRef]

Badcock, T. J.

C. Y. Jin, H. Y. Liu, S. Y. Zhang, Q. Jiang, S. L. Liew, M. Hopkinson, T. J. Badcock, E. Nabavi, and D. J. Mowbray, “Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 91(2), 021102 (2007).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6 μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” J. Appl. Phys. 99(4), 046104 (2006).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Balakrishnan, G.

J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, L. R. Dawson, G. Balakrishnan, and D. L. Huffaker, “Formation and optical characteristics of strain-relieved and densely stacked GaSb/GaAs quantum dots,” Appl. Phys. Lett. 89(20), 203116 (2006).
[CrossRef]

G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, “2.0 μm wavelength InAs quantum dashes grown on a GaAs substrate using a metamorphic buffer layer,” Appl. Phys. Lett. 84(12), 2058 (2004).

Ban, K. Y.

K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).

Ban, K.Y.

K.Y. Ban, S. N. Dahal, L. Nataraj, S. P. Bremner, S. G. Cloutier, and C. B. Honsberg, “Room temperature capacitance-voltage profile and photoluminescence for delta doped InGaAs single quantum well,” J. Vac. Sci. Technol. B 28, C3I6 (2010).

Bedarev, D. A.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Bert, N. A.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Bhattacharya, P.

C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22μm tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011).
[CrossRef]

Bimberg, D.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Bozkurt, M.

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guz-mán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[CrossRef]

Bremner, S. P.

K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).

K.Y. Ban, S. N. Dahal, L. Nataraj, S. P. Bremner, S. G. Cloutier, and C. B. Honsberg, “Room temperature capacitance-voltage profile and photoluminescence for delta doped InGaAs single quantum well,” J. Vac. Sci. Technol. B 28, C3I6 (2010).

Chakrabarti, S.

S. Sengupta, N. Halder, and S. Chakrabarti, “Effect of post-growth rapid thermal annealing on bilayer InAs/GaAs quantum dot heterostructure grown with very thin spacer thickness,” Mater. Res. Bull. 45(11), 1593–1597 (2010).
[CrossRef]

Chang, F.

T. T. Chen, C. L. Cheng, Y. F. Chen, F. Chang, H. Lin, C.-T. Wu, and C.-H. Chen, “Unusual optical properties of type-II InAs/GaAs0.7Sb0.3 quantum dots by photoluminescence studies,” Phys. Rev. B 75(3), 033310 (2007).
[CrossRef]

Chang, H.

W.-S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 μm InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006).
[CrossRef]

Chang, H. S.

W.-S. Liu, D. M.-T. Kuo, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).

Chang, W. H.

Y. A. Liao, W. T. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
[CrossRef]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

T. M. Hsu, Y. S. Lan, W. H. Chang, N. T. Yeh, and J. I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691 (2000).
[CrossRef]

Chen, C.-H.

T. T. Chen, C. L. Cheng, Y. F. Chen, F. Chang, H. Lin, C.-T. Wu, and C.-H. Chen, “Unusual optical properties of type-II InAs/GaAs0.7Sb0.3 quantum dots by photoluminescence studies,” Phys. Rev. B 75(3), 033310 (2007).
[CrossRef]

Chen, S. C.

M. A. Majid, D. T. D. Childs, H. Shahid, S. C. Chen, K. Kennedy, R. J. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “Excited state bilayer quantum dot lasers at 1.3 µm,” Jpn. J. Appl. Phys. 50, 04DG10 (2011).

Chen, T. T.

T. T. Chen, C. L. Cheng, Y. F. Chen, F. Chang, H. Lin, C.-T. Wu, and C.-H. Chen, “Unusual optical properties of type-II InAs/GaAs0.7Sb0.3 quantum dots by photoluminescence studies,” Phys. Rev. B 75(3), 033310 (2007).
[CrossRef]

Chen, W. Y.

W.-S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

W.-S. Liu, D. M.-T. Kuo, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).

Chen, Y. F.

T. T. Chen, C. L. Cheng, Y. F. Chen, F. Chang, H. Lin, C.-T. Wu, and C.-H. Chen, “Unusual optical properties of type-II InAs/GaAs0.7Sb0.3 quantum dots by photoluminescence studies,” Phys. Rev. B 75(3), 033310 (2007).
[CrossRef]

Cheng, C. L.

T. T. Chen, C. L. Cheng, Y. F. Chen, F. Chang, H. Lin, C.-T. Wu, and C.-H. Chen, “Unusual optical properties of type-II InAs/GaAs0.7Sb0.3 quantum dots by photoluminescence studies,” Phys. Rev. B 75(3), 033310 (2007).
[CrossRef]

Cheng, S. J.

W. T. Hsu, Y. A. Liao, S. K. Lu, S. J. Cheng, P. C. Chiu, J. I. Chyi, and W. H. Cheng, “Tailoring of the wave function overlaps and the carrier lifetimes in InAs/GaAs1−xSbx type-II quantum dots,” Physica E 42(10), 2524–2528 (2010).
[CrossRef]

Cheng, W. H.

W. T. Hsu, Y. A. Liao, S. K. Lu, S. J. Cheng, P. C. Chiu, J. I. Chyi, and W. H. Cheng, “Tailoring of the wave function overlaps and the carrier lifetimes in InAs/GaAs1−xSbx type-II quantum dots,” Physica E 42(10), 2524–2528 (2010).
[CrossRef]

Childs, D. T. D.

M. A. Majid, D. T. D. Childs, H. Shahid, S. C. Chen, K. Kennedy, R. J. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “Excited state bilayer quantum dot lasers at 1.3 µm,” Jpn. J. Appl. Phys. 50, 04DG10 (2011).

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009).
[CrossRef]

Chiu, P. C.

W. T. Hsu, Y. A. Liao, S. K. Lu, S. J. Cheng, P. C. Chiu, J. I. Chyi, and W. H. Cheng, “Tailoring of the wave function overlaps and the carrier lifetimes in InAs/GaAs1−xSbx type-II quantum dots,” Physica E 42(10), 2524–2528 (2010).
[CrossRef]

Y. A. Liao, W. T. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
[CrossRef]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

Chiu, P.-C.

M.-H. Mao, L.-C. Su, K.-C. Wang, W.-S. Liu, P.-C. Chiu, and J.-I. Chyi, “Spectrally-resolved dynamics of two-state lasing in quantum-dot lasers,” in IEEE LEOS Conference Proceedings, 39 (2005).
[CrossRef]

Chyi, J. I.

W.-S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

W. T. Hsu, Y. A. Liao, S. K. Lu, S. J. Cheng, P. C. Chiu, J. I. Chyi, and W. H. Cheng, “Tailoring of the wave function overlaps and the carrier lifetimes in InAs/GaAs1−xSbx type-II quantum dots,” Physica E 42(10), 2524–2528 (2010).
[CrossRef]

Y. A. Liao, W. T. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
[CrossRef]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

W.-S. Liu, D. M.-T. Kuo, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).

W.-S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 μm InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006).
[CrossRef]

W.-S. Liu and J. I. Chyi, “Optical properties of InAs quantum dots with InAlAs/InGaAs composite matrix,” J. Appl. Phys. 97(2), 024312 (2005).
[CrossRef]

T. M. Hsu, Y. S. Lan, W. H. Chang, N. T. Yeh, and J. I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691 (2000).
[CrossRef]

Chyi, J.-I.

M.-H. Mao, L.-C. Su, K.-C. Wang, W.-S. Liu, P.-C. Chiu, and J.-I. Chyi, “Spectrally-resolved dynamics of two-state lasing in quantum-dot lasers,” in IEEE LEOS Conference Proceedings, 39 (2005).
[CrossRef]

Clarke, E.

M. A. Majid, D. T. D. Childs, H. Shahid, S. C. Chen, K. Kennedy, R. J. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “Excited state bilayer quantum dot lasers at 1.3 µm,” Jpn. J. Appl. Phys. 50, 04DG10 (2011).

Cloutier, S. G.

K.Y. Ban, S. N. Dahal, L. Nataraj, S. P. Bremner, S. G. Cloutier, and C. B. Honsberg, “Room temperature capacitance-voltage profile and photoluminescence for delta doped InGaAs single quantum well,” J. Vac. Sci. Technol. B 28, C3I6 (2010).

Cockayne, D. J. H.

R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, and D. J. H. Cockayne, “Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 69(13), 1888 (1996).
[CrossRef]

da Silva, E. C. F.

M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva, and J. R. Leite, “InAs/GaAs quantum dots optically active at 1.5 μm,” Appl. Phys. Lett. 82(16), 2646 (2003).
[CrossRef]

da Silva, M. J.

M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva, and J. R. Leite, “InAs/GaAs quantum dots optically active at 1.5 μm,” Appl. Phys. Lett. 82(16), 2646 (2003).
[CrossRef]

Dahal, S. N.

K.Y. Ban, S. N. Dahal, L. Nataraj, S. P. Bremner, S. G. Cloutier, and C. B. Honsberg, “Room temperature capacitance-voltage profile and photoluminescence for delta doped InGaAs single quantum well,” J. Vac. Sci. Technol. B 28, C3I6 (2010).

David, J. P. R.

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6 μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” J. Appl. Phys. 99(4), 046104 (2006).
[CrossRef]

J. S. Ng, H. Y. Liu, M. J. Steer, M. Hopkinson, and J. P. R. David, “Photoluminescence beyond 1.5 μm from InAs quantum dots,” Microelectron. J. 37(12), 1468–1470 (2006).
[CrossRef]

Dawson, L. R.

J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, L. R. Dawson, G. Balakrishnan, and D. L. Huffaker, “Formation and optical characteristics of strain-relieved and densely stacked GaSb/GaAs quantum dots,” Appl. Phys. Lett. 89(20), 203116 (2006).
[CrossRef]

G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, “2.0 μm wavelength InAs quantum dashes grown on a GaAs substrate using a metamorphic buffer layer,” Appl. Phys. Lett. 84(12), 2058 (2004).

del Moral, M.

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guz-mán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[CrossRef]

Deppe, D. G.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564 (1998).
[CrossRef]

Drouzas, I. W. D.

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[CrossRef]

Egorov, A. Yu.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Fafard, S.

R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
[CrossRef]

Fang, C.

W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013).
[CrossRef]

Frost, T.

C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22μm tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011).
[CrossRef]

Gal, M.

R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, and D. J. H. Cockayne, “Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 69(13), 1888 (1996).
[CrossRef]

García, J. M.

J. M. Ripalda, D. Granados, Y. González, A. M. Sánchez, S. I. Molina, and J. M. García, “Room temperature emission at 1.6 μm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[CrossRef]

Gargallo-Caballero, R.

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guz-mán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[CrossRef]

González, Y.

J. M. Ripalda, D. Granados, Y. González, A. M. Sánchez, S. I. Molina, and J. M. García, “Room temperature emission at 1.6 μm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[CrossRef]

Granados, D.

J. M. Ripalda, D. Granados, Y. González, A. M. Sánchez, S. I. Molina, and J. M. García, “Room temperature emission at 1.6 μm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[CrossRef]

Groom, K. M.

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Guimard, D.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[CrossRef]

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs(1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007).
[CrossRef]

Guo, W.

C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22μm tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011).
[CrossRef]

Guz-mán, A.

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guz-mán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[CrossRef]

Halder, N.

S. Sengupta, N. Halder, and S. Chakrabarti, “Effect of post-growth rapid thermal annealing on bilayer InAs/GaAs quantum dot heterostructure grown with very thin spacer thickness,” Mater. Res. Bull. 45(11), 1593–1597 (2010).
[CrossRef]

Hierro, A.

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guz-mán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[CrossRef]

Hogg, R. A.

M. A. Majid, D. T. D. Childs, H. Shahid, S. C. Chen, K. Kennedy, R. J. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “Excited state bilayer quantum dot lasers at 1.3 µm,” Jpn. J. Appl. Phys. 50, 04DG10 (2011).

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Honsberg, C. B.

K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).

K.Y. Ban, S. N. Dahal, L. Nataraj, S. P. Bremner, S. G. Cloutier, and C. B. Honsberg, “Room temperature capacitance-voltage profile and photoluminescence for delta doped InGaAs single quantum well,” J. Vac. Sci. Technol. B 28, C3I6 (2010).

Hopkinson, M.

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[CrossRef]

C. Y. Jin, H. Y. Liu, S. Y. Zhang, Q. Jiang, S. L. Liew, M. Hopkinson, T. J. Badcock, E. Nabavi, and D. J. Mowbray, “Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 91(2), 021102 (2007).
[CrossRef]

J. S. Ng, H. Y. Liu, M. J. Steer, M. Hopkinson, and J. P. R. David, “Photoluminescence beyond 1.5 μm from InAs quantum dots,” Microelectron. J. 37(12), 1468–1470 (2006).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6 μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” J. Appl. Phys. 99(4), 046104 (2006).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Hsu, T. M.

W.-S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

W.-S. Liu, D. M.-T. Kuo, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).

T. M. Hsu, Y. S. Lan, W. H. Chang, N. T. Yeh, and J. I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691 (2000).
[CrossRef]

Hsu, W. T.

W. T. Hsu, Y. A. Liao, S. K. Lu, S. J. Cheng, P. C. Chiu, J. I. Chyi, and W. H. Cheng, “Tailoring of the wave function overlaps and the carrier lifetimes in InAs/GaAs1−xSbx type-II quantum dots,” Physica E 42(10), 2524–2528 (2010).
[CrossRef]

Y. A. Liao, W. T. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
[CrossRef]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

Huang, S.

G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, “2.0 μm wavelength InAs quantum dashes grown on a GaAs substrate using a metamorphic buffer layer,” Appl. Phys. Lett. 84(12), 2058 (2004).

Huang, S. H.

J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, L. R. Dawson, G. Balakrishnan, and D. L. Huffaker, “Formation and optical characteristics of strain-relieved and densely stacked GaSb/GaAs quantum dots,” Appl. Phys. Lett. 89(20), 203116 (2006).
[CrossRef]

Huffaker, D. L.

J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, L. R. Dawson, G. Balakrishnan, and D. L. Huffaker, “Formation and optical characteristics of strain-relieved and densely stacked GaSb/GaAs quantum dots,” Appl. Phys. Lett. 89(20), 203116 (2006).
[CrossRef]

G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, “2.0 μm wavelength InAs quantum dashes grown on a GaAs substrate using a metamorphic buffer layer,” Appl. Phys. Lett. 84(12), 2058 (2004).

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564 (1998).
[CrossRef]

Ishida, M.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[CrossRef]

Ishikawa, H.

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[CrossRef]

Jagadish, C.

R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, and D. J. H. Cockayne, “Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 69(13), 1888 (1996).
[CrossRef]

Jeon, M.

H. J. Park, J. H. Kim, J. J. Yoon, J. S. Son, D. Y. Lee, H. H. Ryu, M. Jeon, and J. Y. Leem, “Step annealing effects on the structural and optical properties of InAs quantum dots grown on GaAs,” J. Cryst. Growth 300(2), 319–323 (2011).
[CrossRef]

Jiang, Q.

C. Y. Jin, H. Y. Liu, S. Y. Zhang, Q. Jiang, S. L. Liew, M. Hopkinson, T. J. Badcock, E. Nabavi, and D. J. Mowbray, “Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 91(2), 021102 (2007).
[CrossRef]

Jin, C. Y.

C. Y. Jin, H. Y. Liu, S. Y. Zhang, Q. Jiang, S. L. Liew, M. Hopkinson, T. J. Badcock, E. Nabavi, and D. J. Mowbray, “Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 91(2), 021102 (2007).
[CrossRef]

Kennedy, K.

M. A. Majid, D. T. D. Childs, H. Shahid, S. C. Chen, K. Kennedy, R. J. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “Excited state bilayer quantum dot lasers at 1.3 µm,” Jpn. J. Appl. Phys. 50, 04DG10 (2011).

Khoshakhlagh, A.

J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, L. R. Dawson, G. Balakrishnan, and D. L. Huffaker, “Formation and optical characteristics of strain-relieved and densely stacked GaSb/GaAs quantum dots,” Appl. Phys. Lett. 89(20), 203116 (2006).
[CrossRef]

Kim, J. H.

H. J. Park, J. H. Kim, J. J. Yoon, J. S. Son, D. Y. Lee, H. H. Ryu, M. Jeon, and J. Y. Leem, “Step annealing effects on the structural and optical properties of InAs quantum dots grown on GaAs,” J. Cryst. Growth 300(2), 319–323 (2011).
[CrossRef]

Kim, Y.

R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, and D. J. H. Cockayne, “Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 69(13), 1888 (1996).
[CrossRef]

Koenraad, P. M.

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guz-mán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[CrossRef]

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[CrossRef]

Kop’ev, P. S.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Kovsh, A. R.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Krijn, M. P. C. M.

M. P. C. M. Krijn, “Heterojunction band offsets and effective masses in III-V quaternary alloys,” Semicond. Sci. Technol. 6(1), 27–31 (1991).
[CrossRef]

Kuciauskas, D.

K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).

Kuo, D. M.-T.

W.-S. Liu, D. M.-T. Kuo, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).

Lamas, T. E.

M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva, and J. R. Leite, “InAs/GaAs quantum dots optically active at 1.5 μm,” Appl. Phys. Lett. 82(16), 2646 (2003).
[CrossRef]

Lan, Y. S.

T. M. Hsu, Y. S. Lan, W. H. Chang, N. T. Yeh, and J. I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691 (2000).
[CrossRef]

Ledentsov, N. N.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Lee, C. S.

C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22μm tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011).
[CrossRef]

Lee, D. Y.

H. J. Park, J. H. Kim, J. J. Yoon, J. S. Son, D. Y. Lee, H. H. Ryu, M. Jeon, and J. Y. Leem, “Step annealing effects on the structural and optical properties of InAs quantum dots grown on GaAs,” J. Cryst. Growth 300(2), 319–323 (2011).
[CrossRef]

Lee, M. C.

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

Leem, J. Y.

H. J. Park, J. H. Kim, J. J. Yoon, J. S. Son, D. Y. Lee, H. H. Ryu, M. Jeon, and J. Y. Leem, “Step annealing effects on the structural and optical properties of InAs quantum dots grown on GaAs,” J. Cryst. Growth 300(2), 319–323 (2011).
[CrossRef]

Leite, J. R.

M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva, and J. R. Leite, “InAs/GaAs quantum dots optically active at 1.5 μm,” Appl. Phys. Lett. 82(16), 2646 (2003).
[CrossRef]

Leon, R.

R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
[CrossRef]

R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, and D. J. H. Cockayne, “Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 69(13), 1888 (1996).
[CrossRef]

Liao, Y. A.

W.-S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

W. T. Hsu, Y. A. Liao, S. K. Lu, S. J. Cheng, P. C. Chiu, J. I. Chyi, and W. H. Cheng, “Tailoring of the wave function overlaps and the carrier lifetimes in InAs/GaAs1−xSbx type-II quantum dots,” Physica E 42(10), 2524–2528 (2010).
[CrossRef]

Y. A. Liao, W. T. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
[CrossRef]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

Liew, S. L.

C. Y. Jin, H. Y. Liu, S. Y. Zhang, Q. Jiang, S. L. Liew, M. Hopkinson, T. J. Badcock, E. Nabavi, and D. J. Mowbray, “Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 91(2), 021102 (2007).
[CrossRef]

Liliental-Weber, Z.

R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
[CrossRef]

Lin, H.

T. T. Chen, C. L. Cheng, Y. F. Chen, F. Chang, H. Lin, C.-T. Wu, and C.-H. Chen, “Unusual optical properties of type-II InAs/GaAs0.7Sb0.3 quantum dots by photoluminescence studies,” Phys. Rev. B 75(3), 033310 (2007).
[CrossRef]

Liu, H. Y.

C. Y. Jin, H. Y. Liu, S. Y. Zhang, Q. Jiang, S. L. Liew, M. Hopkinson, T. J. Badcock, E. Nabavi, and D. J. Mowbray, “Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 91(2), 021102 (2007).
[CrossRef]

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[CrossRef]

J. S. Ng, H. Y. Liu, M. J. Steer, M. Hopkinson, and J. P. R. David, “Photoluminescence beyond 1.5 μm from InAs quantum dots,” Microelectron. J. 37(12), 1468–1470 (2006).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6 μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” J. Appl. Phys. 99(4), 046104 (2006).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Liu, W.-S.

W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013).
[CrossRef]

W.-S. Liu, “Enhancing device characteristics of 1.3 μm emitting InAs/GaAs quantum dot lasers through dot-height uniformity study,” J. Alloy. Comp. 571, 153–158 (2013).
[CrossRef]

W.-S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

W.-S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 μm InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006).
[CrossRef]

W.-S. Liu, D. M.-T. Kuo, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).

W.-S. Liu and J. I. Chyi, “Optical properties of InAs quantum dots with InAlAs/InGaAs composite matrix,” J. Appl. Phys. 97(2), 024312 (2005).
[CrossRef]

M.-H. Mao, L.-C. Su, K.-C. Wang, W.-S. Liu, P.-C. Chiu, and J.-I. Chyi, “Spectrally-resolved dynamics of two-state lasing in quantum-dot lasers,” in IEEE LEOS Conference Proceedings, 39 (2005).
[CrossRef]

Liu, Y. S.

W.-S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 μm InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006).
[CrossRef]

Lu, S. K.

W. T. Hsu, Y. A. Liao, S. K. Lu, S. J. Cheng, P. C. Chiu, J. I. Chyi, and W. H. Cheng, “Tailoring of the wave function overlaps and the carrier lifetimes in InAs/GaAs1−xSbx type-II quantum dots,” Physica E 42(10), 2524–2528 (2010).
[CrossRef]

Majid, M. A.

M. A. Majid, D. T. D. Childs, H. Shahid, S. C. Chen, K. Kennedy, R. J. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “Excited state bilayer quantum dot lasers at 1.3 µm,” Jpn. J. Appl. Phys. 50, 04DG10 (2011).

Malik, S.

S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987 (1997).
[CrossRef]

Malloy, K. J.

G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, “2.0 μm wavelength InAs quantum dashes grown on a GaAs substrate using a metamorphic buffer layer,” Appl. Phys. Lett. 84(12), 2058 (2004).

Mao, M.-H.

M.-H. Mao, L.-C. Su, K.-C. Wang, W.-S. Liu, P.-C. Chiu, and J.-I. Chyi, “Spectrally-resolved dynamics of two-state lasing in quantum-dot lasers,” in IEEE LEOS Conference Proceedings, 39 (2005).
[CrossRef]

Martini, S.

M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva, and J. R. Leite, “InAs/GaAs quantum dots optically active at 1.5 μm,” Appl. Phys. Lett. 82(16), 2646 (2003).
[CrossRef]

Maximov, M. V.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Molina, S. I.

J. M. Ripalda, D. Granados, Y. González, A. M. Sánchez, S. I. Molina, and J. M. García, “Room temperature emission at 1.6 μm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[CrossRef]

Mowbray, D. J.

C. Y. Jin, H. Y. Liu, S. Y. Zhang, Q. Jiang, S. L. Liew, M. Hopkinson, T. J. Badcock, E. Nabavi, and D. J. Mowbray, “Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 91(2), 021102 (2007).
[CrossRef]

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6 μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” J. Appl. Phys. 99(4), 046104 (2006).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Mukai, K.

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[CrossRef]

Murray, R.

M. A. Majid, D. T. D. Childs, H. Shahid, S. C. Chen, K. Kennedy, R. J. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “Excited state bilayer quantum dot lasers at 1.3 µm,” Jpn. J. Appl. Phys. 50, 04DG10 (2011).

S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987 (1997).
[CrossRef]

Nabavi, E.

C. Y. Jin, H. Y. Liu, S. Y. Zhang, Q. Jiang, S. L. Liew, M. Hopkinson, T. J. Badcock, E. Nabavi, and D. J. Mowbray, “Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 91(2), 021102 (2007).
[CrossRef]

Nakata, Y.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[CrossRef]

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[CrossRef]

Nataraj, L.

K.Y. Ban, S. N. Dahal, L. Nataraj, S. P. Bremner, S. G. Cloutier, and C. B. Honsberg, “Room temperature capacitance-voltage profile and photoluminescence for delta doped InGaAs single quantum well,” J. Vac. Sci. Technol. B 28, C3I6 (2010).

Navaretti, P.

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Ng, J. S.

J. S. Ng, H. Y. Liu, M. J. Steer, M. Hopkinson, and J. P. R. David, “Photoluminescence beyond 1.5 μm from InAs quantum dots,” Microelectron. J. 37(12), 1468–1470 (2006).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6 μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” J. Appl. Phys. 99(4), 046104 (2006).
[CrossRef]

Nishioka, M.

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs(1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007).
[CrossRef]

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[CrossRef]

J. Tatebayashi, M. Nishioka, and Y. Arakawa, “Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 78(22), 3469 (2001).
[CrossRef]

Ohtani, N.

K. Akahane, N. Yamamoto, and N. Ohtani, “Long-wavelength light emission from InAs quantum dots covered by GaAsSb grown on GaAs substrates,” Physica E 21(2–4), 295–299 (2004).
[CrossRef]

Otsubo, K.

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[CrossRef]

Park, G.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564 (1998).
[CrossRef]

Park, H. J.

H. J. Park, J. H. Kim, J. J. Yoon, J. S. Son, D. Y. Lee, H. H. Ryu, M. Jeon, and J. Y. Leem, “Step annealing effects on the structural and optical properties of InAs quantum dots grown on GaAs,” J. Cryst. Growth 300(2), 319–323 (2011).
[CrossRef]

Pate, M.

S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987 (1997).
[CrossRef]

Piva, P. G.

R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
[CrossRef]

Qiu, W.-Y.

W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013).
[CrossRef]

Quivy, A. A.

M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva, and J. R. Leite, “InAs/GaAs quantum dots optically active at 1.5 μm,” Appl. Phys. Lett. 82(16), 2646 (2003).
[CrossRef]

Ripalda, J. M.

J. M. Ripalda, D. Granados, Y. González, A. M. Sánchez, S. I. Molina, and J. M. García, “Room temperature emission at 1.6 μm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[CrossRef]

Roberts, C.

S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987 (1997).
[CrossRef]

Rotter, T. J.

G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, “2.0 μm wavelength InAs quantum dashes grown on a GaAs substrate using a metamorphic buffer layer,” Appl. Phys. Lett. 84(12), 2058 (2004).

Ruvimov, S.

R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
[CrossRef]

Ryu, H. H.

H. J. Park, J. H. Kim, J. J. Yoon, J. S. Son, D. Y. Lee, H. H. Ryu, M. Jeon, and J. Y. Leem, “Step annealing effects on the structural and optical properties of InAs quantum dots grown on GaAs,” J. Cryst. Growth 300(2), 319–323 (2011).
[CrossRef]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939 (1982).
[CrossRef]

Sánchez, A. M.

J. M. Ripalda, D. Granados, Y. González, A. M. Sánchez, S. I. Molina, and J. M. García, “Room temperature emission at 1.6 μm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[CrossRef]

Sengupta, S.

S. Sengupta, N. Halder, and S. Chakrabarti, “Effect of post-growth rapid thermal annealing on bilayer InAs/GaAs quantum dot heterostructure grown with very thin spacer thickness,” Mater. Res. Bull. 45(11), 1593–1597 (2010).
[CrossRef]

Shahid, H.

M. A. Majid, D. T. D. Childs, H. Shahid, S. C. Chen, K. Kennedy, R. J. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “Excited state bilayer quantum dot lasers at 1.3 µm,” Jpn. J. Appl. Phys. 50, 04DG10 (2011).

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009).
[CrossRef]

Shchekin, O. B.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564 (1998).
[CrossRef]

Skolnick, M. S.

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6 μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” J. Appl. Phys. 99(4), 046104 (2006).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Son, J. S.

H. J. Park, J. H. Kim, J. J. Yoon, J. S. Son, D. Y. Lee, H. H. Ryu, M. Jeon, and J. Y. Leem, “Step annealing effects on the structural and optical properties of InAs quantum dots grown on GaAs,” J. Cryst. Growth 300(2), 319–323 (2011).
[CrossRef]

Soshnikov, I. P.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Spencer, P.

M. A. Majid, D. T. D. Childs, H. Shahid, S. C. Chen, K. Kennedy, R. J. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “Excited state bilayer quantum dot lasers at 1.3 µm,” Jpn. J. Appl. Phys. 50, 04DG10 (2011).

Steer, M. J.

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[CrossRef]

J. S. Ng, H. Y. Liu, M. J. Steer, M. Hopkinson, and J. P. R. David, “Photoluminescence beyond 1.5 μm from InAs quantum dots,” Microelectron. J. 37(12), 1468–1470 (2006).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6 μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” J. Appl. Phys. 99(4), 046104 (2006).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

Stevens, B. J.

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009).
[CrossRef]

Stintz, A.

G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, “2.0 μm wavelength InAs quantum dashes grown on a GaAs substrate using a metamorphic buffer layer,” Appl. Phys. Lett. 84(12), 2058 (2004).

Su, L.-C.

M.-H. Mao, L.-C. Su, K.-C. Wang, W.-S. Liu, P.-C. Chiu, and J.-I. Chyi, “Spectrally-resolved dynamics of two-state lasing in quantum-dot lasers,” in IEEE LEOS Conference Proceedings, 39 (2005).
[CrossRef]

Suarez, F.

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6 μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” J. Appl. Phys. 99(4), 046104 (2006).
[CrossRef]

Sudo, H.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[CrossRef]

Sugawara, M.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[CrossRef]

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[CrossRef]

Tatebayashi, J.

J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, L. R. Dawson, G. Balakrishnan, and D. L. Huffaker, “Formation and optical characteristics of strain-relieved and densely stacked GaSb/GaAs quantum dots,” Appl. Phys. Lett. 89(20), 203116 (2006).
[CrossRef]

J. Tatebayashi, M. Nishioka, and Y. Arakawa, “Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 78(22), 3469 (2001).
[CrossRef]

Tsatsul’nikov, A. F.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Tsukamoto, S.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[CrossRef]

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs(1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007).
[CrossRef]

Ulloa, J. M.

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guz-mán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[CrossRef]

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[CrossRef]

Ustinov, V. M.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Volovik, B. V.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Wang, K.-C.

M.-H. Mao, L.-C. Su, K.-C. Wang, W.-S. Liu, P.-C. Chiu, and J.-I. Chyi, “Spectrally-resolved dynamics of two-state lasing in quantum-dot lasers,” in IEEE LEOS Conference Proceedings, 39 (2005).
[CrossRef]

Wang, Y.-T.

W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013).
[CrossRef]

Werner, P.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Wu, C.-T.

T. T. Chen, C. L. Cheng, Y. F. Chen, F. Chang, H. Lin, C.-T. Wu, and C.-H. Chen, “Unusual optical properties of type-II InAs/GaAs0.7Sb0.3 quantum dots by photoluminescence studies,” Phys. Rev. B 75(3), 033310 (2007).
[CrossRef]

Wu, H. M.

W.-S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

Xu, H.

G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, “2.0 μm wavelength InAs quantum dashes grown on a GaAs substrate using a metamorphic buffer layer,” Appl. Phys. Lett. 84(12), 2058 (2004).

Yamamoto, N.

K. Akahane, N. Yamamoto, and N. Ohtani, “Long-wavelength light emission from InAs quantum dots covered by GaAsSb grown on GaAs substrates,” Physica E 21(2–4), 295–299 (2004).
[CrossRef]

Yamamoto, T.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[CrossRef]

Yeh, N. T.

T. M. Hsu, Y. S. Lan, W. H. Chang, N. T. Yeh, and J. I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691 (2000).
[CrossRef]

Yokoyama, N.

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[CrossRef]

Yoon, J. J.

H. J. Park, J. H. Kim, J. J. Yoon, J. S. Son, D. Y. Lee, H. H. Ryu, M. Jeon, and J. Y. Leem, “Step annealing effects on the structural and optical properties of InAs quantum dots grown on GaAs,” J. Cryst. Growth 300(2), 319–323 (2011).
[CrossRef]

Zhang, S. Y.

C. Y. Jin, H. Y. Liu, S. Y. Zhang, Q. Jiang, S. L. Liew, M. Hopkinson, T. J. Badcock, E. Nabavi, and D. J. Mowbray, “Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 91(2), 021102 (2007).
[CrossRef]

Zhukov, A. E.

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

Zou, J.

R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, and D. J. H. Cockayne, “Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 69(13), 1888 (1996).
[CrossRef]

Zou, Z.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564 (1998).
[CrossRef]

Appl. Phys. Express

W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier dynamics of a type-II vertically aligned InAs quantum dot structure with a GaAsSb strain-reducing layer,” Appl. Phys. Express 6(8), 085001 (2013).
[CrossRef]

Appl. Phys. Lett.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[CrossRef]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939 (1982).
[CrossRef]

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564 (1998).
[CrossRef]

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95(6), 061101 (2009).
[CrossRef]

C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, “Characteristics of a high speed 1.22μm tunnel injection p-doped quantum dot excited state laser,” Appl. Phys. Lett. 98(1), 011103 (2011).
[CrossRef]

J. M. Ripalda, D. Granados, Y. González, A. M. Sánchez, S. I. Molina, and J. M. García, “Room temperature emission at 1.6 μm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[CrossRef]

M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P. Werner, “Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm,” Appl. Phys. Lett. 75(16), 2347 (1999).
[CrossRef]

G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, “2.0 μm wavelength InAs quantum dashes grown on a GaAs substrate using a metamorphic buffer layer,” Appl. Phys. Lett. 84(12), 2058 (2004).

M. J. da Silva, A. A. Quivy, S. Martini, T. E. Lamas, E. C. F. da Silva, and J. R. Leite, “InAs/GaAs quantum dots optically active at 1.5 μm,” Appl. Phys. Lett. 82(16), 2646 (2003).
[CrossRef]

J. Tatebayashi, M. Nishioka, and Y. Arakawa, “Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 78(22), 3469 (2001).
[CrossRef]

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[CrossRef]

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, P. Navaretti, K. M. Groom, M. Hopkinson, and R. A. Hogg, “Long-wavelength light emission and lasing from InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 86(14), 143108 (2005).
[CrossRef]

J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, L. R. Dawson, G. Balakrishnan, and D. L. Huffaker, “Formation and optical characteristics of strain-relieved and densely stacked GaSb/GaAs quantum dots,” Appl. Phys. Lett. 89(20), 203116 (2006).
[CrossRef]

S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987 (1997).
[CrossRef]

W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[CrossRef]

Y. A. Liao, W. T. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
[CrossRef]

C. Y. Jin, H. Y. Liu, S. Y. Zhang, Q. Jiang, S. L. Liew, M. Hopkinson, T. J. Badcock, E. Nabavi, and D. J. Mowbray, “Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. 91(2), 021102 (2007).
[CrossRef]

W.-S. Liu, D. M.-T. Kuo, J. I. Chyi, W. Y. Chen, H. S. Chang, and T. M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).

R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, and D. J. H. Cockayne, “Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 69(13), 1888 (1996).
[CrossRef]

T. M. Hsu, Y. S. Lan, W. H. Chang, N. T. Yeh, and J. I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett. 11(10), 1205–1207 (1999).
[CrossRef]

J. Alloy. Comp.

W.-S. Liu, “Enhancing device characteristics of 1.3 μm emitting InAs/GaAs quantum dot lasers through dot-height uniformity study,” J. Alloy. Comp. 571, 153–158 (2013).
[CrossRef]

J. Appl. Phys.

W.-S. Liu, H. Chang, Y. S. Liu, and J. I. Chyi, “Pinholelike defects in multistack 1.3 μm InAs quantum dot laser,” J. Appl. Phys. 99(11), 114514 (2006).
[CrossRef]

W.-S. Liu and J. I. Chyi, “Optical properties of InAs quantum dots with InAlAs/InGaAs composite matrix,” J. Appl. Phys. 97(2), 024312 (2005).
[CrossRef]

K. Y. Ban, D. Kuciauskas, S. P. Bremner, and C. B. Honsberg, “Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence,” J. Appl. Phys. 111(10), 104302 (2012).

H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6 μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” J. Appl. Phys. 99(4), 046104 (2006).
[CrossRef]

J. Cryst. Growth

H. J. Park, J. H. Kim, J. J. Yoon, J. S. Son, D. Y. Lee, H. H. Ryu, M. Jeon, and J. Y. Leem, “Step annealing effects on the structural and optical properties of InAs quantum dots grown on GaAs,” J. Cryst. Growth 300(2), 319–323 (2011).
[CrossRef]

W.-S. Liu, H. M. Wu, Y. A. Liao, J. I. Chyi, W. Y. Chen, and T. M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[CrossRef]

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs(1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007).
[CrossRef]

J. Vac. Sci. Technol. B

K.Y. Ban, S. N. Dahal, L. Nataraj, S. P. Bremner, S. G. Cloutier, and C. B. Honsberg, “Room temperature capacitance-voltage profile and photoluminescence for delta doped InGaAs single quantum well,” J. Vac. Sci. Technol. B 28, C3I6 (2010).

Jpn. J. Appl. Phys.

M. A. Majid, D. T. D. Childs, H. Shahid, S. C. Chen, K. Kennedy, R. J. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “Excited state bilayer quantum dot lasers at 1.3 µm,” Jpn. J. Appl. Phys. 50, 04DG10 (2011).

Mater. Res. Bull.

S. Sengupta, N. Halder, and S. Chakrabarti, “Effect of post-growth rapid thermal annealing on bilayer InAs/GaAs quantum dot heterostructure grown with very thin spacer thickness,” Mater. Res. Bull. 45(11), 1593–1597 (2010).
[CrossRef]

Microelectron. J.

J. S. Ng, H. Y. Liu, M. J. Steer, M. Hopkinson, and J. P. R. David, “Photoluminescence beyond 1.5 μm from InAs quantum dots,” Microelectron. J. 37(12), 1468–1470 (2006).
[CrossRef]

Phys. Rev. B

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guz-mán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[CrossRef]

T. T. Chen, C. L. Cheng, Y. F. Chen, F. Chang, H. Lin, C.-T. Wu, and C.-H. Chen, “Unusual optical properties of type-II InAs/GaAs0.7Sb0.3 quantum dots by photoluminescence studies,” Phys. Rev. B 75(3), 033310 (2007).
[CrossRef]

R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
[CrossRef]

Physica E

W. T. Hsu, Y. A. Liao, S. K. Lu, S. J. Cheng, P. C. Chiu, J. I. Chyi, and W. H. Cheng, “Tailoring of the wave function overlaps and the carrier lifetimes in InAs/GaAs1−xSbx type-II quantum dots,” Physica E 42(10), 2524–2528 (2010).
[CrossRef]

K. Akahane, N. Yamamoto, and N. Ohtani, “Long-wavelength light emission from InAs quantum dots covered by GaAsSb grown on GaAs substrates,” Physica E 21(2–4), 295–299 (2004).
[CrossRef]

Semicond. Sci. Technol.

M. P. C. M. Krijn, “Heterojunction band offsets and effective masses in III-V quaternary alloys,” Semicond. Sci. Technol. 6(1), 27–31 (1991).
[CrossRef]

Other

M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters (World Scientific, 1996), Vols. 1 and 2.

W.-S. Liu and C.-M. Chang, “Capping InAs quantum dots with an InGaAsSb strain-reducing layer to improve optical properties and dot-size uniformity,” Thin Solid Films, in press (2014).

M.-H. Mao, L.-C. Su, K.-C. Wang, W.-S. Liu, P.-C. Chiu, and J.-I. Chyi, “Spectrally-resolved dynamics of two-state lasing in quantum-dot lasers,” in IEEE LEOS Conference Proceedings, 39 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic structure of InAs QDs overgrown by GaAs(Sb)/InGaAsSb layer in samples A, B and C.

Fig. 2
Fig. 2

Low-temperature photoluminescence spectra of samples A, B and C at temperature of 10 K. Inset shows the room-temperature photoluminescence spectra of samples A, B and C.

Fig. 3
Fig. 3

Time-resolved photoluminescence (TRPL) decay traces of samples A, B and C at a temperature of 10 K. Inset plots QD ground-state energy as a function of (exciting power)1/3 for samples A, B and C.

Fig. 4
Fig. 4

Schematic energy band structures of InAs QDs overgrown by (a)GaAs, (b)GaAsSb, and (c) InGaAsSb SRL. (Inset: PL spectra of samples A, B and C, fitted by Gaussian distribution curves.) The energy band structure is determined from equations taken from the literatures in [35,36].

Fig. 5
Fig. 5

PL spectra of as-grown and the annealed QD samples C (as-grown, 650, 750, 800, 850 and 900 °C), measured at temperature of 10 K under a excitation power of 100mW. Inset shows state separation for the InAs/InGaAsSb QDs following annealing at various temperatures.

Fig. 6
Fig. 6

TRPL decay traces of as-grown and annealed InAs/InGaAsSb QDs. Inset schematically depicts the transformation of QD band alignment after thermal annealing.

Metrics