Abstract

Supercontinuum spanning over an octave from 900 – 2300 nm is reported in an all-normal dispersion, soft glass photonic crystal fiber. The all-solid microstructured fiber was engineered to achieve a normal dispersion profile flattened to within −50 to −30 ps/nm/km in the wavelength range of 1100 – 2700 nm. Under pumping with 75 fs pulses centered at 1550 nm, the recorded spectral flatness is 7 dB in the 930 – 2170 nm range, and significantly less if cladding modes present in the uncoated photonic crystal fiber are removed. To the best of our knowledge, this is the first report of an octave-spanning, all-normal dispersion supercontinuum generation in a non-silica microstructured fiber, where the spectrum long-wavelength edge is red-shifted to as far as 2300 nm. This is also an important step in moving the concept of ultrafast coherent supercontinuum generation in all-normal dispersion fibers further towards the mid-infrared spectral region.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  2. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
    [CrossRef] [PubMed]
  3. A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
    [CrossRef] [PubMed]
  4. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
    [CrossRef]
  5. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
    [CrossRef]
  6. C. Lin and W. G. French, “Wideband near-I.R. continuum (0.7-2.1 μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
    [CrossRef]
  7. K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42(17), 989–991 (2006).
    [CrossRef]
  8. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [CrossRef] [PubMed]
  9. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24(8), 1786–1792 (2007).
    [CrossRef]
  10. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking or coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008).
    [CrossRef]
  11. X. Feng, T. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003).
    [CrossRef] [PubMed]
  12. T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39(8), 2342–2345 (2014).
    [CrossRef] [PubMed]
  13. G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
    [CrossRef]
  14. R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
    [CrossRef]
  15. I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 um in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B 30(10), 2743–2757 (2013).
    [CrossRef]
  16. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
    [CrossRef]
  17. P. Skibiński and C. Radzewicz, “Bad pixel correction method for locally analytic images: application to infrared spectroscopy,” J. Electron. Imaging 22(4), 043020 (2013).
    [CrossRef]
  18. J. C. Travers, M. H. Frosz, and J. M. Dudley, Nonlinear Fiber Optics Overview, Chap. 3 in Supercontinuum Generation in Optical Fibers, J. M. Dudley and R. Taylor (Cambridge University Press 2010)
  19. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18(14), 14778–14787 (2010).
    [CrossRef] [PubMed]
  20. U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49(1), 63–65 (2013).
    [CrossRef]
  21. U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20(3), 2851–2857 (2012).
    [CrossRef] [PubMed]
  22. S. Dupont, P. M. Moselund, L. Leick, J. Ramsay, and S. R. Keiding, “Up-conversion of a megahertz mid-IR supercontinuum,” J. Opt. Soc. Am. B 30(10), 2570–2575 (2013).
    [CrossRef]
  23. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
    [CrossRef] [PubMed]
  24. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR Microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
    [CrossRef] [PubMed]

2014

T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39(8), 2342–2345 (2014).
[CrossRef] [PubMed]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[CrossRef]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[CrossRef]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[CrossRef] [PubMed]

2013

2012

2011

2010

2008

2007

2006

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42(17), 989–991 (2006).
[CrossRef]

2003

1978

C. Lin and W. G. French, “Wideband near-I.R. continuum (0.7-2.1 μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
[CrossRef]

1976

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[CrossRef]

1970

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

Agger, C.

Agger, C. S.

Alam, S. U.

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

Bang, O.

Bartelt, H.

Baskiotis, C.

Benson, T.

Bjarklev, A.

K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42(17), 989–991 (2006).
[CrossRef]

Bookey, H.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[CrossRef]

Bosman, G. W.

Brilland, L.

Buczynski, R.

T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39(8), 2342–2345 (2014).
[CrossRef] [PubMed]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[CrossRef]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[CrossRef]

Chow, K. K.

K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42(17), 989–991 (2006).
[CrossRef]

Cimek, J.

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Cordeiro, C. M. B.

Cronin-Golomb, M.

Domachuk, P.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Dupont, S.

Feehan, J. S.

Feng, X.

Finazzi, V.

Finot, C.

French, W. G.

C. Lin and W. G. French, “Wideband near-I.R. continuum (0.7-2.1 μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
[CrossRef]

Frosz, M. H.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

George, A. K.

Hartung, A.

Heidt, A. M.

Hewak, D.

Jakobsen, C.

Johansen, J.

Kar, A. K.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[CrossRef]

Keiding, S. R.

Kibler, B.

Klimczak, M.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[CrossRef]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[CrossRef]

Knight, J. C.

Krok, P.

Kubat, I.

Kujawa, I.

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[CrossRef]

Leick, L.

Li, Z.

Lin, C.

K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42(17), 989–991 (2006).
[CrossRef]

C. Lin and W. G. French, “Wideband near-I.R. continuum (0.7-2.1 μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
[CrossRef]

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[CrossRef]

Martynkien, T.

Méchin, D.

Møller, U.

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49(1), 63–65 (2013).
[CrossRef]

U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20(3), 2851–2857 (2012).
[CrossRef] [PubMed]

Møller, U. V.

Monro, T.

Moselund, P. M.

Nishizawa, N.

Omenetto, F. G.

Petersen, C.

Petersen, C. R.

Petropoulos, P.

Price, J. H. V.

Provost, L.

Pysz, D.

T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39(8), 2342–2345 (2014).
[CrossRef] [PubMed]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[CrossRef]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[CrossRef]

Radzewicz, C.

P. Skibiński and C. Radzewicz, “Bad pixel correction method for locally analytic images: application to infrared spectroscopy,” J. Electron. Imaging 22(4), 043020 (2013).
[CrossRef]

Ramsay, J.

Richardson, D. J.

Rohwer, E. G.

Schwoerer, H.

Seddon, A.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

Shu, C.

K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42(17), 989–991 (2006).
[CrossRef]

Siwicki, B.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[CrossRef]

Skibinski, P.

P. Skibiński and C. Radzewicz, “Bad pixel correction method for locally analytic images: application to infrared spectroscopy,” J. Electron. Imaging 22(4), 043020 (2013).
[CrossRef]

Sørensen, S. T.

Stepien, R.

T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39(8), 2342–2345 (2014).
[CrossRef] [PubMed]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[CrossRef]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[CrossRef]

Stepniewski, G.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[CrossRef]

Stolen, R. H.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[CrossRef]

Taghizadeh, M. R.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[CrossRef]

Takayanagi, J.

Takushima, Y.

K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42(17), 989–991 (2006).
[CrossRef]

Thøgersen, J.

Thomsen, C. L.

Wabnitz, S.

Waddie, A. J.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[CrossRef]

Wang, A.

Wolchover, N. A.

Appl. Phys. Lett.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[CrossRef]

Electron. Lett.

C. Lin and W. G. French, “Wideband near-I.R. continuum (0.7-2.1 μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
[CrossRef]

K. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42(17), 989–991 (2006).
[CrossRef]

U. Møller and O. Bang, “Intensity noise in normal-pumped picoseconds supercontinuum generation, where higher-order Raman lines cross into the anomalous dispersion regime,” Electron. Lett. 49(1), 63–65 (2013).
[CrossRef]

J. Electron. Imaging

P. Skibiński and C. Radzewicz, “Bad pixel correction method for locally analytic images: application to infrared spectroscopy,” J. Electron. Imaging 22(4), 043020 (2013).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys. Lett.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[CrossRef]

Opt. Eng.

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[CrossRef]

Opt. Express

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
[CrossRef] [PubMed]

X. Feng, T. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003).
[CrossRef] [PubMed]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[CrossRef] [PubMed]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[CrossRef] [PubMed]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR Microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[CrossRef] [PubMed]

U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20(3), 2851–2857 (2012).
[CrossRef] [PubMed]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18(14), 14778–14787 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Other

J. C. Travers, M. H. Frosz, and J. M. Dudley, Nonlinear Fiber Optics Overview, Chap. 3 in Supercontinuum Generation in Optical Fibers, J. M. Dudley and R. Taylor (Cambridge University Press 2010)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SEM images of the all-solid PCF designated B1 with marked parameters of the inclusion size d and the lattice period Λ.

Fig. 2
Fig. 2

Measured dispersion profiles of the developed all-solid PCFs with designation corresponding to data in Tab. 1.

Fig. 3
Fig. 3

Effective mode area and dispersion profile calculated for fiber B1 along with measured dispersion of this fiber.

Fig. 4
Fig. 4

The experimental setup.

Fig. 5
Fig. 5

Supercontinuum spectra measured in the demonstrated all-solid PCFs under 75 fs pulses centered at 1550 nm.

Fig. 6
Fig. 6

Supercontinuum spectrum recorded for the B1 fiber, corresponding pump pulse spectrum and numerically generated supercontinuum spectrum.

Fig. 7
Fig. 7

Numerically calculated output pulse shape for fiber B1 (propagation length was 57 mm).

Fig. 8
Fig. 8

Numerically generated evolution of spectrum along the fiber length (a) and numerical spectrograms at 0.3 cm (b), 1.2 cm(c) and 5.7 cm (d) of fiber length (numerical reconstruction of spectrum for fiber B1).

Tables (1)

Tables Icon

Table 1 Geometric parameters of the all-solid PCFs developed in this work.

Metrics