Abstract

We report the first experimental realization of all-optical electromagnetically induced transparency (EIT) via a pair of coherently interacting SiO2 microcavities in a one-dimensional SiO2/Si3N4 photonic crystal consisting of a distributed Bragg reflector (DBR). The electromagnetic interactions between the coupled microcavities (CMCs), which possess distinct Q-factors, are controlled by varying the number of embedded SiO2/Si3N4 bilayers in the coupling DBR. In case of weak microcavity interactions, the reflectivity spectrum reveals an all-optical EIT resonance which splits into an Autler-Townes-like resonance under condition of strong microcavity coupling. Our results open up the way for implementing optical analogs of quantum coherence in much simpler one-dimensional structures. We also discuss potential applications of CMCs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  2. A. Naweed, G. Farca, S. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71(4), 043804 (2005).
    [CrossRef]
  3. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
    [CrossRef] [PubMed]
  4. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
    [CrossRef] [PubMed]
  5. K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [CrossRef] [PubMed]
  6. D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Optimization of an optical filter with a square-shaped passband based on coupled microcavities,” J. Mod. Opt. 51(3), 437–446 (2004).
    [CrossRef]
  7. S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
    [CrossRef]
  8. D. D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
    [CrossRef]
  9. M. Bayindir, S. Tanriseven, A. Aydinli, and E. Ozbay, “Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures,” Appl. Phys., A Mater. Sci. Process. 73(1), 125–127 (2001).
    [CrossRef]
  10. A. J. Campillo, J. D. Eversole, and H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67(4), 437–440 (1991).
    [CrossRef] [PubMed]
  11. D. Gerace, H. E. Türeci, A. Imamoglu, V. Giovannetti, and R. Fazio, “The quantum-optical Josephson interferometer,” Nat. Phys. 5(4), 281–284 (2009).
    [CrossRef]
  12. C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, P. Roussignol, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature 440(7086), 904–907 (2006).
    [CrossRef] [PubMed]
  13. S. Y. Hu, E. R. Hegblom, and L. A. Coldren, “Coupled-cavity resonant-photodetectors for high-performance wavelength demultiplexing applications,” Appl. Phys. Lett. 71(2), 178–180 (1997).
    [CrossRef]
  14. P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
    [CrossRef]
  15. C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104(3), 503–511 (2011).
    [CrossRef]
  16. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
    [CrossRef] [PubMed]
  17. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
    [CrossRef]
  18. V. Wong, PhD Thesis, University of Rochester (2004).
  19. M. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
    [CrossRef]
  20. M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88(24), 241103 (2006).
    [CrossRef]
  21. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
    [CrossRef] [PubMed]
  22. Y. Zhang, H. Tian, X. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett. 35(5), 691–693 (2010).
    [CrossRef] [PubMed]
  23. O. Deparis and O. El Daif, “Optimization of slow light one-dimensional Bragg structures for photocurrent enhancement in solar cells,” Opt. Lett. 37(20), 4230–4232 (2012).
    [CrossRef] [PubMed]
  24. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
    [CrossRef] [PubMed]
  25. J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31(9), 1235–1237 (2006).
    [CrossRef] [PubMed]
  26. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett. 32(5), 533–535 (2007).
    [CrossRef] [PubMed]
  27. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  28. N. Miladinovic, F. Hasan, N. Chisholm, I. E. Linnington, E. A. Hinds, and D. H. J. O’Dell, “Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem,” Phys. Rev. A 84(4), 043822 (2011).
    [CrossRef]

2012 (1)

2011 (2)

N. Miladinovic, F. Hasan, N. Chisholm, I. E. Linnington, E. A. Hinds, and D. H. J. O’Dell, “Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem,” Phys. Rev. A 84(4), 043822 (2011).
[CrossRef]

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104(3), 503–511 (2011).
[CrossRef]

2010 (1)

2009 (2)

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

D. Gerace, H. E. Türeci, A. Imamoglu, V. Giovannetti, and R. Fazio, “The quantum-optical Josephson interferometer,” Nat. Phys. 5(4), 281–284 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (4)

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, P. Roussignol, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature 440(7086), 904–907 (2006).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88(24), 241103 (2006).
[CrossRef]

J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31(9), 1235–1237 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Naweed, G. Farca, S. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71(4), 043804 (2005).
[CrossRef]

2004 (2)

D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Optimization of an optical filter with a square-shaped passband based on coupled microcavities,” J. Mod. Opt. 51(3), 437–446 (2004).
[CrossRef]

D. D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

2002 (1)

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[CrossRef]

2001 (1)

M. Bayindir, S. Tanriseven, A. Aydinli, and E. Ozbay, “Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures,” Appl. Phys., A Mater. Sci. Process. 73(1), 125–127 (2001).
[CrossRef]

1999 (1)

M. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[CrossRef]

1997 (2)

S. Y. Hu, E. R. Hegblom, and L. A. Coldren, “Coupled-cavity resonant-photodetectors for high-performance wavelength demultiplexing applications,” Appl. Phys. Lett. 71(2), 178–180 (1997).
[CrossRef]

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

1991 (2)

A. J. Campillo, J. D. Eversole, and H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67(4), 437–440 (1991).
[CrossRef] [PubMed]

K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

1955 (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[CrossRef]

Abram, R. A.

D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Optimization of an optical filter with a square-shaped passband based on coupled microcavities,” J. Mod. Opt. 51(3), 437–446 (2004).
[CrossRef]

Akulshin, A. M.

M. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[CrossRef]

Andreani, L. C.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88(24), 241103 (2006).
[CrossRef]

Asakawa, K.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[CrossRef]

Autler, S. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[CrossRef]

Aydinli, A.

M. Bayindir, S. Tanriseven, A. Aydinli, and E. Ozbay, “Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures,” Appl. Phys., A Mater. Sci. Process. 73(1), 125–127 (2001).
[CrossRef]

Barreiro, S.

M. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[CrossRef]

Bayindir, M.

M. Bayindir, S. Tanriseven, A. Aydinli, and E. Ozbay, “Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures,” Appl. Phys., A Mater. Sci. Process. 73(1), 125–127 (2001).
[CrossRef]

Beggs, D. M.

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
[CrossRef] [PubMed]

D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Optimization of an optical filter with a square-shaped passband based on coupled microcavities,” J. Mod. Opt. 51(3), 437–446 (2004).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Bertolotti, J.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88(24), 241103 (2006).
[CrossRef]

Bloch, J.

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, P. Roussignol, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature 440(7086), 904–907 (2006).
[CrossRef] [PubMed]

Boller, K.-J.

K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Boyd, R.

D. D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Boyd, R. W.

Brand, S.

D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Optimization of an optical filter with a square-shaped passband based on coupled microcavities,” J. Mod. Opt. 51(3), 437–446 (2004).
[CrossRef]

Campillo, A. J.

A. J. Campillo, J. D. Eversole, and H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67(4), 437–440 (1991).
[CrossRef] [PubMed]

Chang, H.

D. D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Chipouline, A.

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104(3), 503–511 (2011).
[CrossRef]

Chisholm, N.

N. Miladinovic, F. Hasan, N. Chisholm, I. E. Linnington, E. A. Hinds, and D. H. J. O’Dell, “Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem,” Phys. Rev. A 84(4), 043822 (2011).
[CrossRef]

Ciuti, C.

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, P. Roussignol, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature 440(7086), 904–907 (2006).
[CrossRef] [PubMed]

Coldren, L. A.

S. Y. Hu, E. R. Hegblom, and L. A. Coldren, “Coupled-cavity resonant-photodetectors for high-performance wavelength demultiplexing applications,” Appl. Phys. Lett. 71(2), 178–180 (1997).
[CrossRef]

Dasbach, G.

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, P. Roussignol, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature 440(7086), 904–907 (2006).
[CrossRef] [PubMed]

Delalande, C.

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, P. Roussignol, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature 440(7086), 904–907 (2006).
[CrossRef] [PubMed]

Deparis, O.

Diederichs, C.

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, P. Roussignol, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature 440(7086), 904–907 (2006).
[CrossRef] [PubMed]

Dudley, C. C.

El Daif, O.

Eversole, J. D.

A. J. Campillo, J. D. Eversole, and H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67(4), 437–440 (1991).
[CrossRef] [PubMed]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Farca, G.

A. Naweed, G. Farca, S. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71(4), 043804 (2005).
[CrossRef]

Fazio, R.

D. Gerace, H. E. Türeci, A. Imamoglu, V. Giovannetti, and R. Fazio, “The quantum-optical Josephson interferometer,” Nat. Phys. 5(4), 281–284 (2009).
[CrossRef]

Fuller, K.

D. D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Galli, M.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88(24), 241103 (2006).
[CrossRef]

Gauthier, D. J.

Gerace, D.

D. Gerace, H. E. Türeci, A. Imamoglu, V. Giovannetti, and R. Fazio, “The quantum-optical Josephson interferometer,” Nat. Phys. 5(4), 281–284 (2009).
[CrossRef]

Ghulinyan, M.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88(24), 241103 (2006).
[CrossRef]

Giovannetti, V.

D. Gerace, H. E. Türeci, A. Imamoglu, V. Giovannetti, and R. Fazio, “The quantum-optical Josephson interferometer,” Nat. Phys. 5(4), 281–284 (2009).
[CrossRef]

Gottardo, S.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88(24), 241103 (2006).
[CrossRef]

Harris, S. E.

K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Hasan, F.

N. Miladinovic, F. Hasan, N. Chisholm, I. E. Linnington, E. A. Hinds, and D. H. J. O’Dell, “Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem,” Phys. Rev. A 84(4), 043822 (2011).
[CrossRef]

Hegblom, E. R.

S. Y. Hu, E. R. Hegblom, and L. A. Coldren, “Coupled-cavity resonant-photodetectors for high-performance wavelength demultiplexing applications,” Appl. Phys. Lett. 71(2), 178–180 (1997).
[CrossRef]

Hinds, E. A.

N. Miladinovic, F. Hasan, N. Chisholm, I. E. Linnington, E. A. Hinds, and D. H. J. O’Dell, “Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem,” Phys. Rev. A 84(4), 043822 (2011).
[CrossRef]

Houdre, R.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

Hu, S. Y.

S. Y. Hu, E. R. Hegblom, and L. A. Coldren, “Coupled-cavity resonant-photodetectors for high-performance wavelength demultiplexing applications,” Appl. Phys. Lett. 71(2), 178–180 (1997).
[CrossRef]

Ikeda, N.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[CrossRef]

Ilegems, M.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

Imamoglu, A.

D. Gerace, H. E. Türeci, A. Imamoglu, V. Giovannetti, and R. Fazio, “The quantum-optical Josephson interferometer,” Nat. Phys. 5(4), 281–284 (2009).
[CrossRef]

Imamolu, A.

K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Ishikawa, H.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[CrossRef]

Kaliteevski, M. A.

D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Optimization of an optical filter with a square-shaped passband based on coupled microcavities,” J. Mod. Opt. 51(3), 437–446 (2004).
[CrossRef]

Käsebier, T.

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104(3), 503–511 (2011).
[CrossRef]

Kley, E.-B.

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104(3), 503–511 (2011).
[CrossRef]

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

Krauss, T. F.

Kwong, D.-L.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Lan, S.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[CrossRef]

Lemaître, A.

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, P. Roussignol, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature 440(7086), 904–907 (2006).
[CrossRef] [PubMed]

Lezama, M.

M. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[CrossRef]

Lin, H.-B.

A. J. Campillo, J. D. Eversole, and H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67(4), 437–440 (1991).
[CrossRef] [PubMed]

Linnington, I. E.

N. Miladinovic, F. Hasan, N. Chisholm, I. E. Linnington, E. A. Hinds, and D. H. J. O’Dell, “Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem,” Phys. Rev. A 84(4), 043822 (2011).
[CrossRef]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Marabelli, F.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88(24), 241103 (2006).
[CrossRef]

McMillan, J. F.

Miladinovic, N.

N. Miladinovic, F. Hasan, N. Chisholm, I. E. Linnington, E. A. Hinds, and D. H. J. O’Dell, “Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem,” Phys. Rev. A 84(4), 043822 (2011).
[CrossRef]

Naweed, A.

A. Naweed, G. Farca, S. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71(4), 043804 (2005).
[CrossRef]

Nishikawa, S.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[CrossRef]

O’Dell, D. H. J.

N. Miladinovic, F. Hasan, N. Chisholm, I. E. Linnington, E. A. Hinds, and D. H. J. O’Dell, “Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem,” Phys. Rev. A 84(4), 043822 (2011).
[CrossRef]

O’Faolain, L.

Oesterle, U.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

Osgood, R. M.

Ozbay, E.

M. Bayindir, S. Tanriseven, A. Aydinli, and E. Ozbay, “Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures,” Appl. Phys., A Mater. Sci. Process. 73(1), 125–127 (2001).
[CrossRef]

Panoiu, N. C.

Pavesi, L.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88(24), 241103 (2006).
[CrossRef]

Pellandini, P.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

Pertsch, T.

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104(3), 503–511 (2011).
[CrossRef]

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Pruessner, M. W.

Rabinovich, W. S.

Rosenberger, A.

D. D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Rosenberger, A. T.

A. Naweed, G. Farca, S. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71(4), 043804 (2005).
[CrossRef]

Roussignol, P.

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, P. Roussignol, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature 440(7086), 904–907 (2006).
[CrossRef] [PubMed]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Schmidt, C.

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104(3), 503–511 (2011).
[CrossRef]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Shi, Z.

Shopova, S.

A. Naweed, G. Farca, S. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71(4), 043804 (2005).
[CrossRef]

Smith, D. D.

D. D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Stanley, R. P.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

Stievater, T. H.

Sugimoto, Y.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[CrossRef]

Tanriseven, S.

M. Bayindir, S. Tanriseven, A. Aydinli, and E. Ozbay, “Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures,” Appl. Phys., A Mater. Sci. Process. 73(1), 125–127 (2001).
[CrossRef]

Tian, H.

Tignon, J.

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, P. Roussignol, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature 440(7086), 904–907 (2006).
[CrossRef] [PubMed]

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

Toninelli, C.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88(24), 241103 (2006).
[CrossRef]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

Townes, C. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[CrossRef]

Tünnermann, A.

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104(3), 503–511 (2011).
[CrossRef]

Türeci, H. E.

D. Gerace, H. E. Türeci, A. Imamoglu, V. Giovannetti, and R. Fazio, “The quantum-optical Josephson interferometer,” Nat. Phys. 5(4), 281–284 (2009).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Wang, N.

Weisbuch, C.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

White, T. P.

Wiersma, D. S.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88(24), 241103 (2006).
[CrossRef]

Wong, C. W.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31(9), 1235–1237 (2006).
[CrossRef] [PubMed]

Wu, H.

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Yang, X.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31(9), 1235–1237 (2006).
[CrossRef] [PubMed]

Yu, M.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Yuan, P.

Zhang, J.

Zhang, X.

Zhang, Y.

Appl. Phys. B (1)

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104(3), 503–511 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

S. Y. Hu, E. R. Hegblom, and L. A. Coldren, “Coupled-cavity resonant-photodetectors for high-performance wavelength demultiplexing applications,” Appl. Phys. Lett. 71(2), 178–180 (1997).
[CrossRef]

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997).
[CrossRef]

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. C. Andreani, “Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices,” Appl. Phys. Lett. 88(24), 241103 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

M. Bayindir, S. Tanriseven, A. Aydinli, and E. Ozbay, “Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures,” Appl. Phys., A Mater. Sci. Process. 73(1), 125–127 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

J. Mod. Opt. (1)

D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Optimization of an optical filter with a square-shaped passband based on coupled microcavities,” J. Mod. Opt. 51(3), 437–446 (2004).
[CrossRef]

Nat. Phys. (1)

D. Gerace, H. E. Türeci, A. Imamoglu, V. Giovannetti, and R. Fazio, “The quantum-optical Josephson interferometer,” Nat. Phys. 5(4), 281–284 (2009).
[CrossRef]

Nature (2)

C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, P. Roussignol, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature 440(7086), 904–907 (2006).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[CrossRef]

Phys. Rev. A (4)

A. Naweed, G. Farca, S. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71(4), 043804 (2005).
[CrossRef]

N. Miladinovic, F. Hasan, N. Chisholm, I. E. Linnington, E. A. Hinds, and D. H. J. O’Dell, “Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem,” Phys. Rev. A 84(4), 043822 (2011).
[CrossRef]

D. D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

M. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[CrossRef]

Phys. Rev. B (1)

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[CrossRef]

Phys. Rev. Lett. (5)

A. J. Campillo, J. D. Eversole, and H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67(4), 437–440 (1991).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[CrossRef] [PubMed]

Other (1)

V. Wong, PhD Thesis, University of Rochester (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of SiO2 CMCs interacting through the middle or coupling DBR in a Si3N4 (blue) and SiO2 (yellow) 1D photonic crystal. The arrows indicate the incident, reflected, and transmitted light. The experimentally realized CMC structures are described in text. Under appropriate conditions, an all-optical EIT resonance may appear in reflectance, while all-optical analog of electromagnetically induced absorption (EIA) may be realized in transmittance (see text for details). (b) Energy level diagram of a Λ atomic system where resonant fields couple the lower energy states to the excited level.

Fig. 2
Fig. 2

(a)-(c) Measured reflectance of samples S1, S2, and S3, respectively.

Fig. 3
Fig. 3

TMM calculated transmittance of sample S2 shows all-optical analog of electromagnetically induced absorption.

Metrics