Abstract

During the past few years, a strong progress has been made in the photo-writing of fiber Bragg gratings (FBGs) in polymer optical fibers (POFs), animated by the constant wish to enhance the grating reflectivity and improve the sensing performances. In this paper, we report the photo-inscription of highly reflective gratings in step-index POFs, obtained thanks to a slight etching of the cladding. We demonstrate that a cladding diameter decrease of ~12% is an ideal trade-off to produce highly reflective gratings with enhanced axial strain sensitivity, while keeping almost intact their mechanical resistance. For this, we make use of Trans-4-stilbenemethanol-doped photosensitive step-index poly(methyl methacrylate) (PMMA) POFs. FBGs are inscribed at ~1550 nm by the scanning phase mask technique in POFs of different external diameters. Reflectivity reaching 97% is achieved for 6 mm long FBGs, compared to 25% for non-etched POFs. We also report that a cladding decrease enhances the FBG axial tension while keeping unchanged temperature and surrounding refractive index sensitivities. Finally and for the first time, a measurement is conducted in transmission with polarized light, showing that a photo-induced birefringence of 7 × 10−6 is generated (one order of magnitude higher than the intrinsic fiber birefringence), which is similar to the one generated in silica fiber using ultra-violet laser.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
    [CrossRef]
  2. A. Stefani, M. Stecher, G. E. Town, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
    [CrossRef]
  3. D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Proc. SPIE 6830, 683002 (2008).
    [CrossRef]
  4. G. Statkiewicz-Barabach, K. Tarnowski, D. Kowal, P. Mergo, and W. Urbanczyk, “Fabrication of multiple Bragg gratings in microstructured polymer fibers using a phase mask with several diffraction orders,” Opt. Express 21(7), 8521–8534 (2013).
    [CrossRef] [PubMed]
  5. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
    [CrossRef] [PubMed]
  6. X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
    [CrossRef]
  7. C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Inscription of narrow bandwidth Bragg gratings in polymer optical fibers,” J. Opt. 15(7), 075404 (2013).
    [CrossRef]
  8. W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett. 24(5), 401–403 (2012).
    [CrossRef]
  9. K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
    [CrossRef] [PubMed]
  10. H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(8), 824–826 (2001).
    [CrossRef]
  11. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [CrossRef]
  12. Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett. 22(21), 1562–1564 (2010).
    [CrossRef]
  13. X. Hu, D. Kinet, K. Chah, P. Mégret, and C. Caucheteur, “Bragg gratings inscription at 1550 nm in photosensitive step-index polymer optical fiber,” Proc. SPIE 8794, 87942Q (2013).
    [CrossRef]
  14. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
    [CrossRef]
  15. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [CrossRef] [PubMed]
  16. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [CrossRef] [PubMed]
  17. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” IEEE Electron. Lett. 47(4), 271–272 (2011).
    [CrossRef]
  18. Z. F. Zhang and X. M. Tao, “Synergetic effects of humidity and temperature on PMMA based fiber Bragg gratings,” J. Lightwave Technol. 30(6), 841–845 (2012).
    [CrossRef]
  19. W. Zhang, D. Webb, and G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
    [CrossRef] [PubMed]
  20. C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE 7503, 750380 (2009).
    [CrossRef]
  21. G. Rajan, M. Y. M. Noor, N. H. Lovell, E. Ambikaizrajah, G. Farrell, and G. D. Peng, “Polymer micro-fiber Bragg grating,” Opt. Lett. 38(17), 3359–3362 (2013).
    [CrossRef] [PubMed]
  22. G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etchedsinglemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
    [CrossRef]
  23. G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, and G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
    [CrossRef]
  24. D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
    [CrossRef] [PubMed]
  25. H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4), 337–343 (2003).
    [CrossRef]
  26. H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett. 16(1), 159–161 (2004).
    [CrossRef]
  27. F. Lhommé, C. Caucheteur, K. Chah, M. Blondel, and P. Mégret, “Synthesis of fiber Bragg grating parameters from experimental reflectivity: a simplex approach and its application to the determination of temperature-dependent properties,” Appl. Opt. 44(4), 493–497 (2005).
    [CrossRef] [PubMed]
  28. A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
    [CrossRef]
  29. C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
    [CrossRef]
  30. C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” J. Lightwave Technol. 27(8), 1000–1010 (2009).
    [CrossRef]

2013 (8)

G. Statkiewicz-Barabach, K. Tarnowski, D. Kowal, P. Mergo, and W. Urbanczyk, “Fabrication of multiple Bragg gratings in microstructured polymer fibers using a phase mask with several diffraction orders,” Opt. Express 21(7), 8521–8534 (2013).
[CrossRef] [PubMed]

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Inscription of narrow bandwidth Bragg gratings in polymer optical fibers,” J. Opt. 15(7), 075404 (2013).
[CrossRef]

X. Hu, D. Kinet, K. Chah, P. Mégret, and C. Caucheteur, “Bragg gratings inscription at 1550 nm in photosensitive step-index polymer optical fiber,” Proc. SPIE 8794, 87942Q (2013).
[CrossRef]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[CrossRef] [PubMed]

G. Rajan, M. Y. M. Noor, N. H. Lovell, E. Ambikaizrajah, G. Farrell, and G. D. Peng, “Polymer micro-fiber Bragg grating,” Opt. Lett. 38(17), 3359–3362 (2013).
[CrossRef] [PubMed]

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etchedsinglemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[CrossRef]

G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, and G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
[CrossRef]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[CrossRef] [PubMed]

2012 (5)

Z. F. Zhang and X. M. Tao, “Synergetic effects of humidity and temperature on PMMA based fiber Bragg gratings,” J. Lightwave Technol. 30(6), 841–845 (2012).
[CrossRef]

W. Zhang, D. Webb, and G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
[CrossRef] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett. 24(5), 401–403 (2012).
[CrossRef]

A. Stefani, M. Stecher, G. E. Town, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
[CrossRef]

2011 (4)

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” IEEE Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

2010 (2)

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett. 22(21), 1562–1564 (2010).
[CrossRef]

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[CrossRef]

2009 (2)

2008 (1)

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Proc. SPIE 6830, 683002 (2008).
[CrossRef]

2007 (2)

K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
[CrossRef] [PubMed]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

2005 (2)

2004 (1)

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett. 16(1), 159–161 (2004).
[CrossRef]

2003 (1)

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4), 337–343 (2003).
[CrossRef]

2001 (1)

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(8), 824–826 (2001).
[CrossRef]

1999 (1)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Alberto, N. J.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Inscription of narrow bandwidth Bragg gratings in polymer optical fibers,” J. Opt. 15(7), 075404 (2013).
[CrossRef]

Ambikairaja, E.

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etchedsinglemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[CrossRef]

Ambikairajah, E.

G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, and G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
[CrossRef]

Ambikaizrajah, E.

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Argyros, A.

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Bang, O.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[CrossRef] [PubMed]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[CrossRef] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett. 24(5), 401–403 (2012).
[CrossRef]

A. Stefani, M. Stecher, G. E. Town, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” IEEE Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Proc. SPIE 6830, 683002 (2008).
[CrossRef]

Bette, S.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” J. Lightwave Technol. 27(8), 1000–1010 (2009).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

Bilro, L. B.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Inscription of narrow bandwidth Bragg gratings in polymer optical fibers,” J. Opt. 15(7), 075404 (2013).
[CrossRef]

Blondel, M.

Capmany, J.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” J. Lightwave Technol. 27(8), 1000–1010 (2009).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

Carroll, K.

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Proc. SPIE 6830, 683002 (2008).
[CrossRef]

Carroll, K. E.

Caucheteur, C.

X. Hu, D. Kinet, K. Chah, P. Mégret, and C. Caucheteur, “Bragg gratings inscription at 1550 nm in photosensitive step-index polymer optical fiber,” Proc. SPIE 8794, 87942Q (2013).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” J. Lightwave Technol. 27(8), 1000–1010 (2009).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

F. Lhommé, C. Caucheteur, K. Chah, M. Blondel, and P. Mégret, “Synthesis of fiber Bragg grating parameters from experimental reflectivity: a simplex approach and its application to the determination of temperature-dependent properties,” Appl. Opt. 44(4), 493–497 (2005).
[CrossRef] [PubMed]

Chah, K.

Chen, X.

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[CrossRef]

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[CrossRef]

Chu, P. L.

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett. 16(1), 159–161 (2004).
[CrossRef]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4), 337–343 (2003).
[CrossRef]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(8), 824–826 (2001).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Dobb, H.

Emiliyanov, G.

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Proc. SPIE 6830, 683002 (2008).
[CrossRef]

Farrell, G.

Garcia-Olcina, R.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” J. Lightwave Technol. 27(8), 1000–1010 (2009).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Hu, X.

X. Hu, D. Kinet, K. Chah, P. Mégret, and C. Caucheteur, “Bragg gratings inscription at 1550 nm in photosensitive step-index polymer optical fiber,” Proc. SPIE 8794, 87942Q (2013).
[CrossRef]

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Johnson, I. P.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” IEEE Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

Kalli, K.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” IEEE Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[CrossRef]

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Proc. SPIE 6830, 683002 (2008).
[CrossRef]

K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
[CrossRef] [PubMed]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[CrossRef] [PubMed]

Khan, L.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” IEEE Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

Kinet, D.

X. Hu, D. Kinet, K. Chah, P. Mégret, and C. Caucheteur, “Bragg gratings inscription at 1550 nm in photosensitive step-index polymer optical fiber,” Proc. SPIE 8794, 87942Q (2013).
[CrossRef]

Kjaer, E.

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Proc. SPIE 6830, 683002 (2008).
[CrossRef]

Komodromos, M.

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Proc. SPIE 6830, 683002 (2008).
[CrossRef]

Kowal, D.

Large, M.

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Proc. SPIE 6830, 683002 (2008).
[CrossRef]

Large, M. C. J.

Lhommé, F.

Liu, B.

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etchedsinglemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[CrossRef]

G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, and G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
[CrossRef]

Liu, H. B.

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett. 16(1), 159–161 (2004).
[CrossRef]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4), 337–343 (2003).
[CrossRef]

Liu, H. Y.

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett. 16(1), 159–161 (2004).
[CrossRef]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4), 337–343 (2003).
[CrossRef]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(8), 824–826 (2001).
[CrossRef]

Lovell, N. H.

Luo, Y.

G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, and G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
[CrossRef]

Markos, C.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[CrossRef] [PubMed]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

Marques, C. A. F.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Inscription of narrow bandwidth Bragg gratings in polymer optical fibers,” J. Opt. 15(7), 075404 (2013).
[CrossRef]

Mégret, P.

X. Hu, D. Kinet, K. Chah, P. Mégret, and C. Caucheteur, “Bragg gratings inscription at 1550 nm in photosensitive step-index polymer optical fiber,” Proc. SPIE 8794, 87942Q (2013).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” J. Lightwave Technol. 27(8), 1000–1010 (2009).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

F. Lhommé, C. Caucheteur, K. Chah, M. Blondel, and P. Mégret, “Synthesis of fiber Bragg grating parameters from experimental reflectivity: a simplex approach and its application to the determination of temperature-dependent properties,” Appl. Opt. 44(4), 493–497 (2005).
[CrossRef] [PubMed]

Mergo, P.

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Nielsen, K.

Nogueira, R. N.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Inscription of narrow bandwidth Bragg gratings in polymer optical fibers,” J. Opt. 15(7), 075404 (2013).
[CrossRef]

Noor, M. Y. M.

Noor, Y. M.

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etchedsinglemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[CrossRef]

Peng, G.

Peng, G. D.

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etchedsinglemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[CrossRef]

G. Rajan, M. Y. M. Noor, N. H. Lovell, E. Ambikaizrajah, G. Farrell, and G. D. Peng, “Polymer micro-fiber Bragg grating,” Opt. Lett. 38(17), 3359–3362 (2013).
[CrossRef] [PubMed]

G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, and G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
[CrossRef]

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett. 22(21), 1562–1564 (2010).
[CrossRef]

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[CrossRef]

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[CrossRef]

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett. 16(1), 159–161 (2004).
[CrossRef]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4), 337–343 (2003).
[CrossRef]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(8), 824–826 (2001).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Rajan, G.

G. Rajan, M. Y. M. Noor, N. H. Lovell, E. Ambikaizrajah, G. Farrell, and G. D. Peng, “Polymer micro-fiber Bragg grating,” Opt. Lett. 38(17), 3359–3362 (2013).
[CrossRef] [PubMed]

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etchedsinglemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[CrossRef]

G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, and G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
[CrossRef]

Rasmussen, H.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” IEEE Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

Rasmussen, H. K.

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Sáez-Rodríguez, D.

Sales, S.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” J. Lightwave Technol. 27(8), 1000–1010 (2009).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Statkiewicz-Barabach, G.

Stecher, M.

A. Stefani, M. Stecher, G. E. Town, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
[CrossRef]

Stefani, A.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[CrossRef] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
[CrossRef]

A. Stefani, M. Stecher, G. E. Town, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
[CrossRef]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett. 24(5), 401–403 (2012).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” IEEE Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

Tao, X. M.

Z. F. Zhang and X. M. Tao, “Synergetic effects of humidity and temperature on PMMA based fiber Bragg gratings,” J. Lightwave Technol. 30(6), 841–845 (2012).
[CrossRef]

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett. 22(21), 1562–1564 (2010).
[CrossRef]

Tarnowski, K.

Town, G. E.

A. Stefani, M. Stecher, G. E. Town, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
[CrossRef]

Urbanczyk, W.

van Eijkelenborg, M. A.

Wang, G. F.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett. 22(21), 1562–1564 (2010).
[CrossRef]

Webb, D.

Webb, D. J.

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etchedsinglemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[CrossRef]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[CrossRef] [PubMed]

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Inscription of narrow bandwidth Bragg gratings in polymer optical fibers,” J. Opt. 15(7), 075404 (2013).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” IEEE Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[CrossRef]

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[CrossRef]

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Proc. SPIE 6830, 683002 (2008).
[CrossRef]

K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
[CrossRef] [PubMed]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[CrossRef] [PubMed]

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Wuilpart, M.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Influence of the grating parameters on the polarization properties of fiber Bragg gratings,” J. Lightwave Technol. 27(8), 1000–1010 (2009).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Yuan, W.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[CrossRef] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett. 24(5), 401–403 (2012).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” IEEE Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

Zhang, C.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett. 22(21), 1562–1564 (2010).
[CrossRef]

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[CrossRef]

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[CrossRef]

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Proc. SPIE 6830, 683002 (2008).
[CrossRef]

K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
[CrossRef] [PubMed]

Zhang, W.

Zhang, Z. F.

Z. F. Zhang and X. M. Tao, “Synergetic effects of humidity and temperature on PMMA based fiber Bragg gratings,” J. Lightwave Technol. 30(6), 841–845 (2012).
[CrossRef]

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett. 22(21), 1562–1564 (2010).
[CrossRef]

Appl. Opt. (1)

IEEE Electron. Lett. (1)

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” IEEE Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (9)

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(8), 824–826 (2001).
[CrossRef]

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett. 22(21), 1562–1564 (2010).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

A. Stefani, M. Stecher, G. E. Town, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
[CrossRef]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett. 24(5), 401–403 (2012).
[CrossRef]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
[CrossRef]

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett. 16(1), 159–161 (2004).
[CrossRef]

IEEE Sens. J. (1)

G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, and G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sens. J. 13(5), 1794–1800 (2013).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. (1)

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Inscription of narrow bandwidth Bragg gratings in polymer optical fibers,” J. Opt. 15(7), 075404 (2013).
[CrossRef]

Meas. Sci. Technol. (1)

X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol. 21(9), 094005 (2010).
[CrossRef]

Opt. Commun. (2)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4), 337–343 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Proc. SPIE (3)

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[CrossRef]

X. Hu, D. Kinet, K. Chah, P. Mégret, and C. Caucheteur, “Bragg gratings inscription at 1550 nm in photosensitive step-index polymer optical fiber,” Proc. SPIE 8794, 87942Q (2013).
[CrossRef]

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Proc. SPIE 6830, 683002 (2008).
[CrossRef]

Sens. Actuators A Phys. (1)

G. Rajan, Y. M. Noor, B. Liu, E. Ambikairaja, D. J. Webb, and G. D. Peng, “A fast response intrinsic humidity sensor based on an etchedsinglemode polymer fiber Bragg grating,” Sens. Actuators A Phys. 203, 107–111 (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Evolution of the cladding diameter during the etching process (a) and microscope pictures at two times during the etching process (b).

Fig. 2
Fig. 2

Experimental set-up for FBG photo-inscription in POFs (a) and sketch of the scanning laser beam technique along the fiber axis (b).

Fig. 3
Fig. 3

UV cured splice without acrylic sealant coating (a) and UV cured splice with acrylic sealant coating (b) between POF and angled silica fiber.

Fig. 4
Fig. 4

Reflection band growth (a), wavelength and bandwidth (b) as a function of time during the writing process for a non-etched step-index 150 µm POF.

Fig. 5
Fig. 5

Peak intensity evolution as a function of time during the writing process for three different POF diameters.

Fig. 6
Fig. 6

Reflective peak power of 6 mm long gratings as a function of the fiber diameter for different scanning velocities (10 µm/s, 40 µm/s and 160µm/s).

Fig. 7
Fig. 7

Nonlinear fits of wavelength shifts with temperature for three different diameter FBGs (a); linear fits of wavelength shifts with temperature for diameter 150 µm (b), 133 µm (c) and 108 µm (d) POFs.

Fig. 8
Fig. 8

Wavelength shift as a function of axial tension for three different diameters FBGs.

Fig. 9
Fig. 9

Wavelength shift as a function of surrounding refractive index for three cladding diameters.

Fig. 10
Fig. 10

Transmitted spectrum (black line) and polarization dependent loss (red line) for a 6 mm long FBG in 133 µm step-index POF.

Fig. 11
Fig. 11

Experimentally and numerically reconstructed transmitted amplitude and PDL curves for a 6 mm long FBG photo-inscribed in 133 µm step-index POF.

Metrics