Abstract

We demonstrate surface emitting distributed feedback (DFB) lasers across the red, green, and blue from densely packed colloidal quantum dot (CQD) films. The solid CQD films were deposited on periodic grating patterns to enable 2nd-order DFB lasing action at mere 120, 280, and 330 μJ/cm2 of optical pumping energy densities for red, green, and blue DFB lasers, respectively. The lasers operated in single mode operation with less than 1 nm of full-width-half-maximum. We measured far-field patterns showing high degree of spatial beam coherence. Specifically, by taking advantage of single exciton optical gain regime from our engineered CQDs, we can significantly suppress the Auger recombination to reduce lasing threshold and achieve quasi-steady state, optically pumped operation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [CrossRef]
  2. L. Brus, “A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites,” J. Chem. Phys. 79(11), 5566–5571 (1983).
    [CrossRef]
  3. A. Ekimov and A. Onushchenko, “Quantum size effect in three-dimensional microscopic semiconductor crystals,” ZhETF Pis. Red. 34, 363 (1981).
  4. J. S. Steckel, J. Ho, C. Hamilton, C. Breen, W. Liu, P. Allen, J. Xi, and S. Coe-Sullivan, “Quantum dots: the ultimate down-conversion material for LCD displays,” SID Symp. Dig. Tech. Pap. (submitted) (2014).
  5. J. S. Steckel, and S. Coe-Sullivan, “Quantum dots for display backlighting,” Abstr. Pap. Am. Chem. Soc. 246 (2013).
  6. K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photon. 3(6), 341–345 (2009).
    [CrossRef]
  7. C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
    [CrossRef] [PubMed]
  8. B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon. 7(5), 407–412 (2013).
    [CrossRef]
  9. C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
    [CrossRef]
  10. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
    [CrossRef] [PubMed]
  11. C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
    [CrossRef] [PubMed]
  12. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
    [CrossRef] [PubMed]
  13. M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
    [CrossRef] [PubMed]
  14. Y. J. Chen, B. Guilhabert, J. Herrnsdorf, Y. F. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
    [CrossRef]
  15. S. A. Gao, C. F. Zhang, Y. J. Liu, H. P. Su, L. Wei, T. Huang, N. Dellas, S. Z. Shang, S. E. Mohney, J. K. Wang, and J. A. Xu, “Lasing from colloidal InP/ZnS quantum dots,” Opt. Express 19(6), 5528–5535 (2011).
    [CrossRef] [PubMed]
  16. V. C. Sundar, H. J. Eisler, T. Deng, Y. T. Chan, E. L. Thomas, and M. G. Bawendi, “Soft-lithographically embossed, multilayered distributed-feedback nanocrystal lasers,” Adv. Mater. 16(23–24), 2137–2141 (2004).
    [CrossRef]
  17. F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Funct. Mater. 22(2), 337–344 (2012).
    [CrossRef]
  18. C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
    [CrossRef]
  19. M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
    [CrossRef]
  20. O. Goede, L. John, and D. Hennig, “Compositional disorder‐induced broadening for free excitons in II‐VI semiconducting mixed crystals,” Phys. Status Solidi B 89(2), K183–K186 (1978).
    [CrossRef]
  21. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
    [CrossRef]
  22. J. Lee, S. Ahn, S. Kim, D. U. Kim, H. Jeon, S. J. Lee, and J. H. Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission,” Appl. Phys. Lett. 94(10), 101105 (2009).
    [CrossRef]
  23. J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, and H. Jeon, “Polarization-dependent GaN surface grating reflector for short wavelength applications,” Opt. Express 17(25), 22535–22542 (2009).
    [CrossRef] [PubMed]
  24. V. I. Klimov, J. A. McGuire, R. D. Schaller, and V. I. Rupasov, “Scaling of multiexciton lifetimes in semiconductor nanocrystals,” Phys. Rev. B 77(19), 195324 (2008).
    [CrossRef]

2013 (2)

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon. 7(5), 407–412 (2013).
[CrossRef]

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[CrossRef]

2012 (3)

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[CrossRef] [PubMed]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[CrossRef] [PubMed]

F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Funct. Mater. 22(2), 337–344 (2012).
[CrossRef]

2011 (2)

S. A. Gao, C. F. Zhang, Y. J. Liu, H. P. Su, L. Wei, T. Huang, N. Dellas, S. Z. Shang, S. E. Mohney, J. K. Wang, and J. A. Xu, “Lasing from colloidal InP/ZnS quantum dots,” Opt. Express 19(6), 5528–5535 (2011).
[CrossRef] [PubMed]

Y. J. Chen, B. Guilhabert, J. Herrnsdorf, Y. F. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[CrossRef]

2010 (1)

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
[CrossRef] [PubMed]

2009 (3)

J. Lee, S. Ahn, S. Kim, D. U. Kim, H. Jeon, S. J. Lee, and J. H. Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission,” Appl. Phys. Lett. 94(10), 101105 (2009).
[CrossRef]

J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, and H. Jeon, “Polarization-dependent GaN surface grating reflector for short wavelength applications,” Opt. Express 17(25), 22535–22542 (2009).
[CrossRef] [PubMed]

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photon. 3(6), 341–345 (2009).
[CrossRef]

2008 (1)

V. I. Klimov, J. A. McGuire, R. D. Schaller, and V. I. Rupasov, “Scaling of multiexciton lifetimes in semiconductor nanocrystals,” Phys. Rev. B 77(19), 195324 (2008).
[CrossRef]

2007 (1)

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

2004 (1)

V. C. Sundar, H. J. Eisler, T. Deng, Y. T. Chan, E. L. Thomas, and M. G. Bawendi, “Soft-lithographically embossed, multilayered distributed-feedback nanocrystal lasers,” Adv. Mater. 16(23–24), 2137–2141 (2004).
[CrossRef]

2000 (1)

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

1996 (1)

M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[CrossRef]

1993 (1)

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[CrossRef]

1983 (1)

L. Brus, “A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites,” J. Chem. Phys. 79(11), 5566–5571 (1983).
[CrossRef]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

1981 (1)

A. Ekimov and A. Onushchenko, “Quantum size effect in three-dimensional microscopic semiconductor crystals,” ZhETF Pis. Red. 34, 363 (1981).

1978 (1)

O. Goede, L. John, and D. Hennig, “Compositional disorder‐induced broadening for free excitons in II‐VI semiconducting mixed crystals,” Phys. Status Solidi B 89(2), K183–K186 (1978).
[CrossRef]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Achermann, M.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Ahn, S.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[CrossRef]

J. Lee, S. Ahn, S. Kim, D. U. Kim, H. Jeon, S. J. Lee, and J. H. Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission,” Appl. Phys. Lett. 94(10), 101105 (2009).
[CrossRef]

J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, and H. Jeon, “Polarization-dependent GaN surface grating reflector for short wavelength applications,” Opt. Express 17(25), 22535–22542 (2009).
[CrossRef] [PubMed]

Arakawa, Y.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Baek, J. H.

J. Lee, S. Ahn, S. Kim, D. U. Kim, H. Jeon, S. J. Lee, and J. H. Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission,” Appl. Phys. Lett. 94(10), 101105 (2009).
[CrossRef]

Bawendi, M.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon. 7(5), 407–412 (2013).
[CrossRef]

Bawendi, M. G.

V. C. Sundar, H. J. Eisler, T. Deng, Y. T. Chan, E. L. Thomas, and M. G. Bawendi, “Soft-lithographically embossed, multilayered distributed-feedback nanocrystal lasers,” Adv. Mater. 16(23–24), 2137–2141 (2004).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[CrossRef]

Bezel, I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Bozio, R.

F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Funct. Mater. 22(2), 337–344 (2012).
[CrossRef]

Breen, C.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[CrossRef]

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon. 7(5), 407–412 (2013).
[CrossRef]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[CrossRef] [PubMed]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[CrossRef] [PubMed]

Brus, L.

L. Brus, “A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites,” J. Chem. Phys. 79(11), 5566–5571 (1983).
[CrossRef]

Brusatin, G.

F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Funct. Mater. 22(2), 337–344 (2012).
[CrossRef]

Bulovic, V.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon. 7(5), 407–412 (2013).
[CrossRef]

Chan, Y. T.

V. C. Sundar, H. J. Eisler, T. Deng, Y. T. Chan, E. L. Thomas, and M. G. Bawendi, “Soft-lithographically embossed, multilayered distributed-feedback nanocrystal lasers,” Adv. Mater. 16(23–24), 2137–2141 (2004).
[CrossRef]

Chang, H.

Chen, Y. J.

Y. J. Chen, B. Guilhabert, J. Herrnsdorf, Y. F. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[CrossRef]

Cho, K. S.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photon. 3(6), 341–345 (2009).
[CrossRef]

Choi, B. L.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photon. 3(6), 341–345 (2009).
[CrossRef]

Coe-Sullivan, S.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[CrossRef]

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon. 7(5), 407–412 (2013).
[CrossRef]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[CrossRef] [PubMed]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[CrossRef] [PubMed]

Collini, E.

F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Funct. Mater. 22(2), 337–344 (2012).
[CrossRef]

Dang, C.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[CrossRef]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[CrossRef] [PubMed]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[CrossRef] [PubMed]

Dawson, M. D.

Y. J. Chen, B. Guilhabert, J. Herrnsdorf, Y. F. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[CrossRef]

Della Giustina, G.

F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Funct. Mater. 22(2), 337–344 (2012).
[CrossRef]

Dellas, N.

Deng, T.

V. C. Sundar, H. J. Eisler, T. Deng, Y. T. Chan, E. L. Thomas, and M. G. Bawendi, “Soft-lithographically embossed, multilayered distributed-feedback nanocrystal lasers,” Adv. Mater. 16(23–24), 2137–2141 (2004).
[CrossRef]

Eisler, H. J.

V. C. Sundar, H. J. Eisler, T. Deng, Y. T. Chan, E. L. Thomas, and M. G. Bawendi, “Soft-lithographically embossed, multilayered distributed-feedback nanocrystal lasers,” Adv. Mater. 16(23–24), 2137–2141 (2004).
[CrossRef]

Ekimov, A.

A. Ekimov and A. Onushchenko, “Quantum size effect in three-dimensional microscopic semiconductor crystals,” ZhETF Pis. Red. 34, 363 (1981).

Fortunati, I.

F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Funct. Mater. 22(2), 337–344 (2012).
[CrossRef]

Gao, S. A.

Garbin, E.

F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Funct. Mater. 22(2), 337–344 (2012).
[CrossRef]

Gardin, S.

F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Funct. Mater. 22(2), 337–344 (2012).
[CrossRef]

Goede, O.

O. Goede, L. John, and D. Hennig, “Compositional disorder‐induced broadening for free excitons in II‐VI semiconducting mixed crystals,” Phys. Status Solidi B 89(2), K183–K186 (1978).
[CrossRef]

Gu, E.

Y. J. Chen, B. Guilhabert, J. Herrnsdorf, Y. F. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[CrossRef]

Guilhabert, B.

Y. J. Chen, B. Guilhabert, J. Herrnsdorf, Y. F. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[CrossRef]

Guyot-Sionnest, P.

M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[CrossRef]

Hamilton, C.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon. 7(5), 407–412 (2013).
[CrossRef]

Han, J.

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[CrossRef] [PubMed]

Han, J. Y.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photon. 3(6), 341–345 (2009).
[CrossRef]

Hennig, D.

O. Goede, L. John, and D. Hennig, “Compositional disorder‐induced broadening for free excitons in II‐VI semiconducting mixed crystals,” Phys. Status Solidi B 89(2), K183–K186 (1978).
[CrossRef]

Herrnsdorf, J.

Y. J. Chen, B. Guilhabert, J. Herrnsdorf, Y. F. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[CrossRef]

Hines, M. A.

M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[CrossRef]

Huang, T.

Ivanov, S. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Jang, E.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photon. 3(6), 341–345 (2009).
[CrossRef]

Jasieniak, J. J.

F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Funct. Mater. 22(2), 337–344 (2012).
[CrossRef]

Jeon, H.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[CrossRef]

J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, and H. Jeon, “Polarization-dependent GaN surface grating reflector for short wavelength applications,” Opt. Express 17(25), 22535–22542 (2009).
[CrossRef] [PubMed]

J. Lee, S. Ahn, S. Kim, D. U. Kim, H. Jeon, S. J. Lee, and J. H. Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission,” Appl. Phys. Lett. 94(10), 101105 (2009).
[CrossRef]

John, L.

O. Goede, L. John, and D. Hennig, “Compositional disorder‐induced broadening for free excitons in II‐VI semiconducting mixed crystals,” Phys. Status Solidi B 89(2), K183–K186 (1978).
[CrossRef]

Joo, W. J.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photon. 3(6), 341–345 (2009).
[CrossRef]

Kazlas, P. T.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon. 7(5), 407–412 (2013).
[CrossRef]

Kim, B. K.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photon. 3(6), 341–345 (2009).
[CrossRef]

Kim, D. U.

J. Lee, S. Ahn, S. Kim, D. U. Kim, H. Jeon, S. J. Lee, and J. H. Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission,” Appl. Phys. Lett. 94(10), 101105 (2009).
[CrossRef]

Kim, H.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[CrossRef]

Kim, J.

Kim, J. M.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photon. 3(6), 341–345 (2009).
[CrossRef]

Kim, S.

J. Lee, S. Ahn, S. Kim, D. U. Kim, H. Jeon, S. J. Lee, and J. H. Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission,” Appl. Phys. Lett. 94(10), 101105 (2009).
[CrossRef]

Kim, T. H.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photon. 3(6), 341–345 (2009).
[CrossRef]

Klimov, V. I.

V. I. Klimov, J. A. McGuire, R. D. Schaller, and V. I. Rupasov, “Scaling of multiexciton lifetimes in semiconductor nanocrystals,” Phys. Rev. B 77(19), 195324 (2008).
[CrossRef]

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Krahne, R.

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
[CrossRef] [PubMed]

Kwon, S. J.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photon. 3(6), 341–345 (2009).
[CrossRef]

Lanzani, G.

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
[CrossRef] [PubMed]

Laurand, N.

Y. J. Chen, B. Guilhabert, J. Herrnsdorf, Y. F. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[CrossRef]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

Lee, E. K.

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photon. 3(6), 341–345 (2009).
[CrossRef]

Lee, J.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[CrossRef]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[CrossRef] [PubMed]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[CrossRef] [PubMed]

J. Lee, S. Ahn, S. Kim, D. U. Kim, H. Jeon, S. J. Lee, and J. H. Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission,” Appl. Phys. Lett. 94(10), 101105 (2009).
[CrossRef]

J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, and H. Jeon, “Polarization-dependent GaN surface grating reflector for short wavelength applications,” Opt. Express 17(25), 22535–22542 (2009).
[CrossRef] [PubMed]

Lee, S. J.

J. Lee, S. Ahn, S. Kim, D. U. Kim, H. Jeon, S. J. Lee, and J. H. Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission,” Appl. Phys. Lett. 94(10), 101105 (2009).
[CrossRef]

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photon. 3(6), 341–345 (2009).
[CrossRef]

Liu, Y. J.

Lupo, M. G.

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
[CrossRef] [PubMed]

Mackintosh, A. R.

Y. J. Chen, B. Guilhabert, J. Herrnsdorf, Y. F. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[CrossRef]

Manna, L.

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
[CrossRef] [PubMed]

Mashford, B. S.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon. 7(5), 407–412 (2013).
[CrossRef]

McBranch, D. W.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

McGuire, J. A.

V. I. Klimov, J. A. McGuire, R. D. Schaller, and V. I. Rupasov, “Scaling of multiexciton lifetimes in semiconductor nanocrystals,” Phys. Rev. B 77(19), 195324 (2008).
[CrossRef]

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

Mohney, S. E.

Murray, C. B.

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[CrossRef]

Nanda, J.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Norris, D. J.

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[CrossRef]

Nurmikko, A.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[CrossRef]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[CrossRef] [PubMed]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[CrossRef] [PubMed]

Onushchenko, A.

A. Ekimov and A. Onushchenko, “Quantum size effect in three-dimensional microscopic semiconductor crystals,” ZhETF Pis. Red. 34, 363 (1981).

Park, Y.

Pethrick, R. A.

Y. J. Chen, B. Guilhabert, J. Herrnsdorf, Y. F. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[CrossRef]

Piryatinski, A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Popovic, Z.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon. 7(5), 407–412 (2013).
[CrossRef]

Roh, K.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[CrossRef]

Rupasov, V. I.

V. I. Klimov, J. A. McGuire, R. D. Schaller, and V. I. Rupasov, “Scaling of multiexciton lifetimes in semiconductor nanocrystals,” Phys. Rev. B 77(19), 195324 (2008).
[CrossRef]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Schaller, R. D.

V. I. Klimov, J. A. McGuire, R. D. Schaller, and V. I. Rupasov, “Scaling of multiexciton lifetimes in semiconductor nanocrystals,” Phys. Rev. B 77(19), 195324 (2008).
[CrossRef]

Shang, S. Z.

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Signorini, R.

F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Funct. Mater. 22(2), 337–344 (2012).
[CrossRef]

Steckel, J.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon. 7(5), 407–412 (2013).
[CrossRef]

Steckel, J. S.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[CrossRef]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[CrossRef] [PubMed]

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[CrossRef] [PubMed]

Stevenson, M.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon. 7(5), 407–412 (2013).
[CrossRef]

Su, H. P.

Sundar, V. C.

V. C. Sundar, H. J. Eisler, T. Deng, Y. T. Chan, E. L. Thomas, and M. G. Bawendi, “Soft-lithographically embossed, multilayered distributed-feedback nanocrystal lasers,” Adv. Mater. 16(23–24), 2137–2141 (2004).
[CrossRef]

Thomas, E. L.

V. C. Sundar, H. J. Eisler, T. Deng, Y. T. Chan, E. L. Thomas, and M. G. Bawendi, “Soft-lithographically embossed, multilayered distributed-feedback nanocrystal lasers,” Adv. Mater. 16(23–24), 2137–2141 (2004).
[CrossRef]

Todescato, F.

F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Funct. Mater. 22(2), 337–344 (2012).
[CrossRef]

Toffanin, S.

F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Funct. Mater. 22(2), 337–344 (2012).
[CrossRef]

Wang, J. K.

Wei, L.

Xu, J. A.

Zavelani-Rossi, M.

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
[CrossRef] [PubMed]

Zhang, C. F.

Zhang, Y.

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[CrossRef] [PubMed]

Zhang, Y. F.

Y. J. Chen, B. Guilhabert, J. Herrnsdorf, Y. F. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[CrossRef]

Zhou, Z. Q.

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon. 7(5), 407–412 (2013).
[CrossRef]

Adv. Funct. Mater. (1)

F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. Della Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSe-CdZnS-ZnS quantum dots,” Adv. Funct. Mater. 22(2), 337–344 (2012).
[CrossRef]

Adv. Mater. (2)

C. Dang, J. Lee, Y. Zhang, J. Han, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “A wafer-level integrated white-light-emitting diode incorporating colloidal quantum dots as a nanocomposite luminescent material,” Adv. Mater. 24(44), 5915–5918 (2012).
[CrossRef] [PubMed]

V. C. Sundar, H. J. Eisler, T. Deng, Y. T. Chan, E. L. Thomas, and M. G. Bawendi, “Soft-lithographically embossed, multilayered distributed-feedback nanocrystal lasers,” Adv. Mater. 16(23–24), 2137–2141 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

Y. J. Chen, B. Guilhabert, J. Herrnsdorf, Y. F. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99(24), 241103 (2011).
[CrossRef]

J. Lee, S. Ahn, S. Kim, D. U. Kim, H. Jeon, S. J. Lee, and J. H. Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission,” Appl. Phys. Lett. 94(10), 101105 (2009).
[CrossRef]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[CrossRef]

J. Am. Chem. Soc. (1)

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[CrossRef]

J. Appl. Phys. (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

J. Chem. Phys. (1)

L. Brus, “A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites,” J. Chem. Phys. 79(11), 5566–5571 (1983).
[CrossRef]

J. Phys. Chem. (1)

M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[CrossRef]

Nanoscale (1)

M. Zavelani-Rossi, M. G. Lupo, R. Krahne, L. Manna, and G. Lanzani, “Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods,” Nanoscale 2(6), 931–935 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[CrossRef] [PubMed]

Nat. Photon. (2)

K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photon. 3(6), 341–345 (2009).
[CrossRef]

B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photon. 7(5), 407–412 (2013).
[CrossRef]

Nature (1)

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

V. I. Klimov, J. A. McGuire, R. D. Schaller, and V. I. Rupasov, “Scaling of multiexciton lifetimes in semiconductor nanocrystals,” Phys. Rev. B 77(19), 195324 (2008).
[CrossRef]

Phys. Status Solidi B (1)

O. Goede, L. John, and D. Hennig, “Compositional disorder‐induced broadening for free excitons in II‐VI semiconducting mixed crystals,” Phys. Status Solidi B 89(2), K183–K186 (1978).
[CrossRef]

Science (1)

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

ZhETF Pis. Red. (1)

A. Ekimov and A. Onushchenko, “Quantum size effect in three-dimensional microscopic semiconductor crystals,” ZhETF Pis. Red. 34, 363 (1981).

Other (2)

J. S. Steckel, J. Ho, C. Hamilton, C. Breen, W. Liu, P. Allen, J. Xi, and S. Coe-Sullivan, “Quantum dots: the ultimate down-conversion material for LCD displays,” SID Symp. Dig. Tech. Pap. (submitted) (2014).

J. S. Steckel, and S. Coe-Sullivan, “Quantum dots for display backlighting,” Abstr. Pap. Am. Chem. Soc. 246 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Absorption and photoluminescence spectra from densely packed solid red, green, and blue CQD films at room temperature.

Fig. 2
Fig. 2

The procedure of the green and blue DFB grating fabrication. a-e, 170 nm-thick layer of PMMA was spin-coated on quartz, then soft-baked at 180 °C for 180 sec. Then, as a charge-dissipation layer for the electron beams, a thin Cr film (less than 10 nm) was evaporated above the PMMA (a). The PMMA resist was developed after removing the Cr film by wet etching process (b). A 30 nm-thick Cr layer was deposited on the patterned PMMA (c). Lift-off process of the PMMA in acetone resulted in a periodic Cr hard-mask pattern (d). Finally, a grating pattern with groove depth of 75 nm was formed by ICP-RIE process (e). Reference SEM image of the cross-sectional view of red DFB gratings fabricated by holographic lithography (f-g), SEM image of the bare blue DFB grating by electron beam lithography (h) and with closed-packed quantum dot films via spin-casting (i). In (i), the CQD film at the cleaved edge is lifted thereby offering a retracted quasi-3D view of the grating and the film, respectively. Scale bars are 500 nm.

Fig. 3
Fig. 3

(a) Spectral characteristics of the RGB DFB lasers. Solid lines represent the single mode output laser beams emerging from spontaneous emission perpendicular to the device surfaces just above threshold. Edge emission ASE spectra (dashed lines) acquired in separate experiments on planar CQD films is superposed to indicated the wavelengths for presumed maximum gain in the red, green, and blue, respectively. (b)-(d) Input-Output characteristics of the three lasers highlighting the threshold regime (lines connecting data points are guide to the eye). Insets show the far-field patterns perpendicular to the DFB plane, underscoring the spatial coherence in the laser emission (whose beam geometry reflects the narrow 20 µm stripe of excitation along a 200 µm length of the gratings).

Fig. 4
Fig. 4

Far-field patterns of the output beams for red (a), green (b), and blue (c), respectively.

Tables (1)

Tables Icon

Table 1 Output Characteristics of the RGB CQD DFB Lasers

Metrics