Abstract

We report on the effect of pulse to pulse interactions during percussion drilling of steel using high power ps-laser radiation with repetition rates of up to 10 MHz and high average powers up to 80 W. The ablation rate per pulse is measured as a function of the pulse repetition rate for four fluences ranging from 500 mJ/cm2 up to 1500 mJ/cm2. For every investigated fluence an abrupt increase of the ablation rate per pulse is observed at a distinctive repetition rate. The onset repetition rate for this effect is strongly dependent on the applied pulse fluence. The origin of the increase of the ablation rate is attributed to the emergence of a melt based ablation processes, as Laser Scanning Microscopy (LSM) images show the occurrence of melt ejected material surrounding the drilling holes. A semi empirical model based on classical heat conduction including heat accumulation as well as pulse-particle interactions is applied to enable quantitative conclusions on the origin of the observed data. In agreement with previous studies, the acquired data confirm the relevance of these two effects for the fundamental description of materials processing with ultra-short pulsed laser radiation at high repetition rates and high average power.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [CrossRef]
  2. C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129(1-2), 134–142 (1996).
    [CrossRef]
  3. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716 (1997).
    [CrossRef]
  4. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
    [CrossRef] [PubMed]
  5. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
    [CrossRef] [PubMed]
  6. P. S. Banks, M. D. Feit, A. M. Rubenchik, B. C. Stuart, and M. D. Perry, “Material effects in ultra-short pulse laser drilling of metals,” Appl. Phys., A Mater. Sci. Process. 69(7), S377–S380 (1999).
    [CrossRef]
  7. S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395–20400 (2010).
    [CrossRef] [PubMed]
  8. G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys. A 77, 307–310 (2003).
  9. G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
    [CrossRef]
  10. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
    [CrossRef] [PubMed]
  11. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), 233–244 (2006).
    [CrossRef]
  12. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-Amplifier,” Opt. Express 17(15), 12230–12245 (2009).
    [CrossRef] [PubMed]
  13. B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P.-E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
    [CrossRef]
  14. D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE 5339, 49–63 (2004).
    [CrossRef]
  15. J. Finger, M. Weinand, and D. Wortmann, “Investigations on processing of carbon fiber reinforced plastics using ultrashort pulsed laser radiation with high average power,” Proceedings of ICALEO, #1905 (2013).
  16. J. Schille, R. Ebert, U. Loeschner, P. Scully, N. Goddard, and H. Exner, “High repetition rate femtosecond laser processing of metals,” Proc. SPIE 7589, 758915 (2010).
    [CrossRef]
  17. A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
    [CrossRef]
  18. A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14(26), 13113–13119 (2006).
    [CrossRef] [PubMed]
  19. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
    [CrossRef] [PubMed]
  20. I. Mingareev and A. Horn, “Time-resolved investigations of plasma and melt ejections in metals by pump-probe shadowgrpahy,” Appl. Phys., A Mater. Sci. Process. 92(4), 917–920 (2008).
    [CrossRef]
  21. R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
    [CrossRef]
  22. C. Y. Liu, X. L. Mao, R. Greif, and R. E. Russo, “Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation,” J. Phys. Conf. Ser. 59, 338–342 (2007).
    [CrossRef]
  23. S. H. Jeong, R. Greif, and R. E. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D Appl. Phys. 32(19), 2578–2585 (1999).
    [CrossRef]
  24. J. König, S. Nolte, and A. Tünnermann, “Plasma evolution during metal ablation with ultrashort laser pulses,” Opt. Express 13(26), 10597–10607 (2005).
    [CrossRef] [PubMed]
  25. L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion†,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
    [CrossRef]
  26. A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys., A Mater. Sci. Process. 69(S1), S67–S73 (1999).
    [CrossRef]
  27. F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 879–881 (2004).
    [CrossRef]
  28. C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
    [CrossRef] [PubMed]
  29. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
    [CrossRef]
  30. H. Treusch, P. Schäfer, and H. Junge, Abtragen, Bohren und Trennen mit Festkörperlasern (VDI-Technologiezentrum Physikalische Technologien, 1997).

2012 (2)

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P.-E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[CrossRef]

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[CrossRef] [PubMed]

2010 (3)

2009 (3)

2008 (2)

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

I. Mingareev and A. Horn, “Time-resolved investigations of plasma and melt ejections in metals by pump-probe shadowgrpahy,” Appl. Phys., A Mater. Sci. Process. 92(4), 917–920 (2008).
[CrossRef]

2007 (2)

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

C. Y. Liu, X. L. Mao, R. Greif, and R. E. Russo, “Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation,” J. Phys. Conf. Ser. 59, 338–342 (2007).
[CrossRef]

2006 (3)

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14(26), 13113–13119 (2006).
[CrossRef] [PubMed]

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), 233–244 (2006).
[CrossRef]

2005 (2)

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[CrossRef]

J. König, S. Nolte, and A. Tünnermann, “Plasma evolution during metal ablation with ultrashort laser pulses,” Opt. Express 13(26), 10597–10607 (2005).
[CrossRef] [PubMed]

2004 (2)

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 879–881 (2004).
[CrossRef]

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE 5339, 49–63 (2004).
[CrossRef]

2003 (2)

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys. A 77, 307–310 (2003).

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

1999 (4)

S. H. Jeong, R. Greif, and R. E. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D Appl. Phys. 32(19), 2578–2585 (1999).
[CrossRef]

A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys., A Mater. Sci. Process. 69(S1), S67–S73 (1999).
[CrossRef]

P. S. Banks, M. D. Feit, A. M. Rubenchik, B. C. Stuart, and M. D. Perry, “Material effects in ultra-short pulse laser drilling of metals,” Appl. Phys., A Mater. Sci. Process. 69(7), S377–S380 (1999).
[CrossRef]

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
[CrossRef]

1997 (1)

1996 (2)

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129(1-2), 134–142 (1996).
[CrossRef]

Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Ancona, A.

Andersen, T. V.

Audouard, E.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[CrossRef]

Banks, P. S.

P. S. Banks, M. D. Feit, A. M. Rubenchik, B. C. Stuart, and M. D. Perry, “Material effects in ultra-short pulse laser drilling of metals,” Appl. Phys., A Mater. Sci. Process. 69(7), S377–S380 (1999).
[CrossRef]

Bauer, T.

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys. A 77, 307–310 (2003).

Breitling, D.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[CrossRef]

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE 5339, 49–63 (2004).
[CrossRef]

Bruneau, S.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Chichkov, B. N.

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[CrossRef] [PubMed]

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 879–881 (2004).
[CrossRef]

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys. A 77, 307–310 (2003).

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716 (1997).
[CrossRef]

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129(1-2), 134–142 (1996).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Dai, J.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

Dausinger, F.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[CrossRef]

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE 5339, 49–63 (2004).
[CrossRef]

Donnet, C.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[CrossRef]

Döring, S.

Dumitru, G.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Ebert, R.

J. Schille, R. Ebert, U. Loeschner, P. Scully, N. Goddard, and H. Exner, “High repetition rate femtosecond laser processing of metals,” Proc. SPIE 7589, 758915 (2010).
[CrossRef]

Eidam, T.

Exner, H.

J. Schille, R. Ebert, U. Loeschner, P. Scully, N. Goddard, and H. Exner, “High repetition rate femtosecond laser processing of metals,” Proc. SPIE 7589, 758915 (2010).
[CrossRef]

Feit, M. D.

P. S. Banks, M. D. Feit, A. M. Rubenchik, B. C. Stuart, and M. D. Perry, “Material effects in ultra-short pulse laser drilling of metals,” Appl. Phys., A Mater. Sci. Process. 69(7), S377–S380 (1999).
[CrossRef]

Finger, J.

J. Finger, M. Weinand, and D. Wortmann, “Investigations on processing of carbon fiber reinforced plastics using ultrashort pulsed laser radiation with high average power,” Proceedings of ICALEO, #1905 (2013).

Föhl, C.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[CrossRef]

Gabler, T.

Gerbig, Y.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Goddard, N.

J. Schille, R. Ebert, U. Loeschner, P. Scully, N. Goddard, and H. Exner, “High repetition rate femtosecond laser processing of metals,” Proc. SPIE 7589, 758915 (2010).
[CrossRef]

Greif, R.

C. Y. Liu, X. L. Mao, R. Greif, and R. E. Russo, “Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation,” J. Phys. Conf. Ser. 59, 338–342 (2007).
[CrossRef]

S. H. Jeong, R. Greif, and R. E. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D Appl. Phys. 32(19), 2578–2585 (1999).
[CrossRef]

Guo, C.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14(26), 13113–13119 (2006).
[CrossRef] [PubMed]

Haefke, H.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Hanf, S.

Hermann, J.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Hoffmann, H. D.

Horn, A.

I. Mingareev and A. Horn, “Time-resolved investigations of plasma and melt ejections in metals by pump-probe shadowgrpahy,” Appl. Phys., A Mater. Sci. Process. 92(4), 917–920 (2008).
[CrossRef]

Ivanov, D. S.

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion†,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
[CrossRef]

Jacobs, H.

Jaeggi, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P.-E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[CrossRef]

Jauregui, C.

Jeong, S. H.

S. H. Jeong, R. Greif, and R. E. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D Appl. Phys. 32(19), 2578–2585 (1999).
[CrossRef]

Kamlage, G.

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys. A 77, 307–310 (2003).

Kelly, R.

A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys., A Mater. Sci. Process. 69(S1), S67–S73 (1999).
[CrossRef]

Koch, J.

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[CrossRef] [PubMed]

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 879–881 (2004).
[CrossRef]

Kohns, P.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

Kokody, N. G.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

König, J.

Korte, F.

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 879–881 (2004).
[CrossRef]

Kuzmichev, V. M.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

Le Harzic, R.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[CrossRef]

Limpert, J.

Lin, Z.

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion†,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
[CrossRef]

Liu, C. Y.

C. Y. Liu, X. L. Mao, R. Greif, and R. E. Russo, “Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation,” J. Phys. Conf. Ser. 59, 338–342 (2007).
[CrossRef]

Liu, H. C.

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
[CrossRef]

Loeschner, U.

J. Schille, R. Ebert, U. Loeschner, P. Scully, N. Goddard, and H. Exner, “High repetition rate femtosecond laser processing of metals,” Proc. SPIE 7589, 758915 (2010).
[CrossRef]

Mans, T.

Mao, S. S.

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
[CrossRef]

Mao, X. L.

C. Y. Liu, X. L. Mao, R. Greif, and R. E. Russo, “Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation,” J. Phys. Conf. Ser. 59, 338–342 (2007).
[CrossRef]

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
[CrossRef]

Marine, W.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Martin, P.-E.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P.-E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[CrossRef]

Mingareev, I.

I. Mingareev and A. Horn, “Time-resolved investigations of plasma and melt ejections in metals by pump-probe shadowgrpahy,” Appl. Phys., A Mater. Sci. Process. 92(4), 917–920 (2008).
[CrossRef]

Miotello, A.

A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys., A Mater. Sci. Process. 69(S1), S67–S73 (1999).
[CrossRef]

Momma, C.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716 (1997).
[CrossRef]

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129(1-2), 134–142 (1996).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Neuenschwander, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P.-E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[CrossRef]

Nolte, S.

S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395–20400 (2010).
[CrossRef] [PubMed]

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

J. König, S. Nolte, and A. Tünnermann, “Plasma evolution during metal ablation with ultrashort laser pulses,” Opt. Express 13(26), 10597–10607 (2005).
[CrossRef] [PubMed]

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716 (1997).
[CrossRef]

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129(1-2), 134–142 (1996).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Ostendorf, A.

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys. A 77, 307–310 (2003).

Overmeyer, L.

Perry, M. D.

P. S. Banks, M. D. Feit, A. M. Rubenchik, B. C. Stuart, and M. D. Perry, “Material effects in ultra-short pulse laser drilling of metals,” Appl. Phys., A Mater. Sci. Process. 69(7), S377–S380 (1999).
[CrossRef]

Poprawe, R.

Rademaker, K.

Richter, S.

Romano, V.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Roser, F.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), 233–244 (2006).
[CrossRef]

Röser, F.

Rotarius, G.

Rouffiange, V.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P.-E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[CrossRef]

Rubenchik, A. M.

P. S. Banks, M. D. Feit, A. M. Rubenchik, B. C. Stuart, and M. D. Perry, “Material effects in ultra-short pulse laser drilling of metals,” Appl. Phys., A Mater. Sci. Process. 69(7), S377–S380 (1999).
[CrossRef]

Ruf, A.

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE 5339, 49–63 (2004).
[CrossRef]

Russbueldt, P.

Russo, R. E.

C. Y. Liu, X. L. Mao, R. Greif, and R. E. Russo, “Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation,” J. Phys. Conf. Ser. 59, 338–342 (2007).
[CrossRef]

S. H. Jeong, R. Greif, and R. E. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D Appl. Phys. 32(19), 2578–2585 (1999).
[CrossRef]

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
[CrossRef]

Schille, J.

J. Schille, R. Ebert, U. Loeschner, P. Scully, N. Goddard, and H. Exner, “High repetition rate femtosecond laser processing of metals,” Proc. SPIE 7589, 758915 (2010).
[CrossRef]

Schmid, M.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P.-E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[CrossRef]

Schreiber, T.

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[CrossRef] [PubMed]

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), 233–244 (2006).
[CrossRef]

Scully, P.

J. Schille, R. Ebert, U. Loeschner, P. Scully, N. Goddard, and H. Exner, “High repetition rate femtosecond laser processing of metals,” Proc. SPIE 7589, 758915 (2010).
[CrossRef]

Seise, E.

Sentis, M.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Sommer, S.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[CrossRef]

Stuart, B. C.

P. S. Banks, M. D. Feit, A. M. Rubenchik, B. C. Stuart, and M. D. Perry, “Material effects in ultra-short pulse laser drilling of metals,” Appl. Phys., A Mater. Sci. Process. 69(7), S377–S380 (1999).
[CrossRef]

Tunnermann, A.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), 233–244 (2006).
[CrossRef]

Tünnermann, A.

S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395–20400 (2010).
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[CrossRef] [PubMed]

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[CrossRef] [PubMed]

J. König, S. Nolte, and A. Tünnermann, “Plasma evolution during metal ablation with ultrashort laser pulses,” Opt. Express 13(26), 10597–10607 (2005).
[CrossRef] [PubMed]

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716 (1997).
[CrossRef]

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129(1-2), 134–142 (1996).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Unger, C.

Valette, S.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[CrossRef]

von Alvensleben, F.

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129(1-2), 134–142 (1996).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14(26), 13113–13119 (2006).
[CrossRef] [PubMed]

Wang, M.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Wang, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Weber, H. P.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

Weikert, M.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[CrossRef]

Weinand, M.

J. Finger, M. Weinand, and D. Wortmann, “Investigations on processing of carbon fiber reinforced plastics using ultrashort pulsed laser radiation with high average power,” Proceedings of ICALEO, #1905 (2013).

Weitenberg, J.

Wellegehausen, B.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716 (1997).
[CrossRef]

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129(1-2), 134–142 (1996).
[CrossRef]

Welling, H.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716 (1997).
[CrossRef]

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129(1-2), 134–142 (1996).
[CrossRef]

Wirth, C.

Wortmann, D.

J. Finger, M. Weinand, and D. Wortmann, “Investigations on processing of carbon fiber reinforced plastics using ultrashort pulsed laser radiation with high average power,” Proceedings of ICALEO, #1905 (2013).

Yang, J.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Yoo, J. H.

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
[CrossRef]

Zhang, N.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Zhigilei, L. V.

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion†,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
[CrossRef]

Zhu, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Appl. Phys. A (1)

G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys. A 77, 307–310 (2003).

Appl. Phys., A Mater. Sci. Process. (7)

P. S. Banks, M. D. Feit, A. M. Rubenchik, B. C. Stuart, and M. D. Perry, “Material effects in ultra-short pulse laser drilling of metals,” Appl. Phys., A Mater. Sci. Process. 69(7), S377–S380 (1999).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

I. Mingareev and A. Horn, “Time-resolved investigations of plasma and melt ejections in metals by pump-probe shadowgrpahy,” Appl. Phys., A Mater. Sci. Process. 92(4), 917–920 (2008).
[CrossRef]

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, “Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S887–S894 (1999).
[CrossRef]

A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys., A Mater. Sci. Process. 69(S1), S67–S73 (1999).
[CrossRef]

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 879–881 (2004).
[CrossRef]

Appl. Surf. Sci. (2)

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
[CrossRef]

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), 233–244 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion†,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
[CrossRef]

J. Phys. Conf. Ser. (1)

C. Y. Liu, X. L. Mao, R. Greif, and R. E. Russo, “Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation,” J. Phys. Conf. Ser. 59, 338–342 (2007).
[CrossRef]

J. Phys. D Appl. Phys. (1)

S. H. Jeong, R. Greif, and R. E. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D Appl. Phys. 32(19), 2578–2585 (1999).
[CrossRef]

Opt. Commun. (1)

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129(1-2), 134–142 (1996).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[CrossRef] [PubMed]

Proc. SPIE (3)

J. Schille, R. Ebert, U. Loeschner, P. Scully, N. Goddard, and H. Exner, “High repetition rate femtosecond laser processing of metals,” Proc. SPIE 7589, 758915 (2010).
[CrossRef]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P.-E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[CrossRef]

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE 5339, 49–63 (2004).
[CrossRef]

Other (2)

J. Finger, M. Weinand, and D. Wortmann, “Investigations on processing of carbon fiber reinforced plastics using ultrashort pulsed laser radiation with high average power,” Proceedings of ICALEO, #1905 (2013).

H. Treusch, P. Schäfer, and H. Junge, Abtragen, Bohren und Trennen mit Festkörperlasern (VDI-Technologiezentrum Physikalische Technologien, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Ablation rate in depth per pulse as a function of the applied repetition rate for different pulse fluences ranging from F = 500 to 1500 mJ/cm2. The ablation depth per pulse is calculated by dividing the total depth of a crater by the number of laser pulses N = 400.

Fig. 2
Fig. 2

LSM images of ablation craters for different pulse repetition rates. For repetition rates of more than 2 MHz a distinctive ejection of molten material is observed (F = 750mJ/cm2, N = 400). The crater diameter increases from 36.5 µm for the use of 1 MHz up to 49,5 µm for the use of 10 MHz.

Fig. 3
Fig. 3

Temperature rise as a function of time for z = 1 µm below the workpiece surface for different pulse repetition rates. With increasing repetition rate the temperature rise between two subsequent laser pulses increases due to less time for energy dissipation. The absorbed laser peak-fluence F0 ∙ AHA is 80 mJ/cm2 in this case.

Fig. 4
Fig. 4

Measured and modeled ablation depth per pulse as a function of repetition rate. The increase is caused by the superposition of heat accumulation and increasing energy input due to pulse-particle interactions.

Tables (2)

Tables Icon

Table 1 Summary of Processing Parameters Used in the Experiments

Tables Icon

Table 2 Summary of the Values for AHA(Δt,F) Used as Empirical Factors in the Simulation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T SP ( z,t,A HA )=  Δ z Δ z F 0 A HA ρc Δ z 1 4 π α t  exp( ( z z ) 2 4 α t )  dz'.
T MP ( z,t, f rep , A HA ,N )= i=1 N T SP ( z,t i f rep , A HA )Θ( z,t i f rep )
A HA ( Δt,F )={ a+bΔt+c,   Δt<a/b c=const,         Δt   a/b

Metrics