Abstract

A novel nanofabrication technique based on 4-beam interference lithography is presented that enables the preparation of large macroscopic areas (>50 mm2) of perfectly periodic and defect-free two-dimensional plasmonic arrays of nanoparticles as small as 100 nm. The technique is based on a special interferometer, composed of two mirrors and a sample with photoresist that together form a right-angled corner reflector. In such an interferometer, the incoming expanded laser beam is split into four interfering beams that yield an interference pattern with rectangular symmetry. The interferometer allows setting the periods of the array from about 220 nm to 1500 nm in both directions independently through the rotation of the corner-reflector assembly around horizontal and vertical axes perpendicular to the direction of the incident beam. Using a theoretical model, the implementation of the four-beam interference lithography is discussed in terms of the optimum contrast as well as attainable periods of the array. Several examples of plasmonic arrays (on either glass or polymer substrate layers) fabricated by this technique are presented.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light 2nd Edition, 1–286 (Princeton University Press, 2008).
  2. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, 1–200 (Springer, 2010).
  3. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [CrossRef] [PubMed]
  4. M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-Density Periodic Arrays of Self-Aligned Subwavelength Nanopyramids for Surface-Enhanced Raman Spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
    [CrossRef]
  5. S. R. J. Brueck, “Optical and interferometric lithography - Nanotechnology enablers,” P IEEE 93(10), 1704–1721 (2005).
    [CrossRef]
  6. J. H. Seo, J. H. Park, S. I. Kim, B. J. Park, Z. Q. Ma, J. Choi, and B. K. Ju, “Nanopatterning by Laser Interference Lithography: Applications to Optical Devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
    [CrossRef] [PubMed]
  7. X. Y. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, “Advances in contemporary nanosphere lithographic techniques,” J. Nanosci. Nanotechnol. 6(7), 1920–1934 (2006).
    [CrossRef] [PubMed]
  8. L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49(10), 1663–1672 (2002).
    [CrossRef]
  9. L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
    [CrossRef] [PubMed]
  10. J. de Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning,” Opt. Lett. 34(12), 1783–1785 (2009).
    [CrossRef] [PubMed]
  11. L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
    [CrossRef]
  12. A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B 15(6), 2439–2443 (1997).
    [CrossRef]
  13. A. Fernandez and D. W. Phillion, “Effects of phase shifts on four-beam interference patterns,” Appl. Opt. 37(3), 473–478 (1998).
    [CrossRef] [PubMed]
  14. M. Ellman, A. Rodriguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
    [CrossRef]
  15. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13(23), 9605–9611 (2005).
    [CrossRef] [PubMed]
  16. X. Zhang, M. Theuring, Q. Song, W. D. Mao, M. Begliarbekov, and S. Strauf, “Holographic Control of Motive Shape in Plasmonic Nanogap Arrays,” Nano Lett. 11(7), 2715–2719 (2011).
    [CrossRef] [PubMed]
  17. X. Zhang and S. Strauf, “Formation of triplet and quadruplet plasmonic nanoarray templates by holographic lithography,” Appl. Phys. Lett. 102, 093110 (2013).
  18. W. D. Mao, G. Q. Liang, H. Zou, and H. Z. Wang, “Controllable fabrication of two-dimensional compound photonic crystals by single-exposure holographic lithography,” Opt. Lett. 31(11), 1708–1710 (2006).
    [CrossRef] [PubMed]
  19. A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
    [CrossRef]
  20. H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Four-wave EUV interference lithography,” Microelectron. Eng. 61–62, 77–82 (2002).
    [CrossRef]
  21. H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
    [CrossRef]
  22. J. L. Stay and T. K. Gaylord, “Contrast in four-beam-interference lithography,” Opt. Lett. 33(13), 1434–1436 (2008).
    [CrossRef] [PubMed]
  23. B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. G. de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82(15), 155447 (2010).
    [CrossRef]

2014 (1)

J. H. Seo, J. H. Park, S. I. Kim, B. J. Park, Z. Q. Ma, J. Choi, and B. K. Ju, “Nanopatterning by Laser Interference Lithography: Applications to Optical Devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[CrossRef] [PubMed]

2013 (1)

X. Zhang and S. Strauf, “Formation of triplet and quadruplet plasmonic nanoarray templates by holographic lithography,” Appl. Phys. Lett. 102, 093110 (2013).

2011 (1)

X. Zhang, M. Theuring, Q. Song, W. D. Mao, M. Begliarbekov, and S. Strauf, “Holographic Control of Motive Shape in Plasmonic Nanogap Arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[CrossRef] [PubMed]

2010 (2)

B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. G. de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82(15), 155447 (2010).
[CrossRef]

M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-Density Periodic Arrays of Self-Aligned Subwavelength Nanopyramids for Surface-Enhanced Raman Spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
[CrossRef]

2009 (3)

J. de Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning,” Opt. Lett. 34(12), 1783–1785 (2009).
[CrossRef] [PubMed]

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[CrossRef]

M. Ellman, A. Rodriguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[CrossRef]

2008 (2)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

J. L. Stay and T. K. Gaylord, “Contrast in four-beam-interference lithography,” Opt. Lett. 33(13), 1434–1436 (2008).
[CrossRef] [PubMed]

2006 (2)

W. D. Mao, G. Q. Liang, H. Zou, and H. Z. Wang, “Controllable fabrication of two-dimensional compound photonic crystals by single-exposure holographic lithography,” Opt. Lett. 31(11), 1708–1710 (2006).
[CrossRef] [PubMed]

X. Y. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, “Advances in contemporary nanosphere lithographic techniques,” J. Nanosci. Nanotechnol. 6(7), 1920–1934 (2006).
[CrossRef] [PubMed]

2005 (3)

L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[CrossRef]

S. R. J. Brueck, “Optical and interferometric lithography - Nanotechnology enablers,” P IEEE 93(10), 1704–1721 (2005).
[CrossRef]

N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13(23), 9605–9611 (2005).
[CrossRef] [PubMed]

2002 (4)

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Four-wave EUV interference lithography,” Microelectron. Eng. 61–62, 77–82 (2002).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49(10), 1663–1672 (2002).
[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B 15(6), 2439–2443 (1997).
[CrossRef]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Auguie, B.

B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. G. de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82(15), 155447 (2010).
[CrossRef]

Ayerdi, I.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[CrossRef]

M. Ellman, A. Rodriguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[CrossRef]

Barnes, W. L.

B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. G. de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82(15), 155447 (2010).
[CrossRef]

Begliarbekov, M.

X. Zhang, M. Theuring, Q. Song, W. D. Mao, M. Begliarbekov, and S. Strauf, “Holographic Control of Motive Shape in Plasmonic Nanogap Arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[CrossRef] [PubMed]

Bendana, X. M.

B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. G. de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82(15), 155447 (2010).
[CrossRef]

Berthou, T.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[CrossRef]

M. Ellman, A. Rodriguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[CrossRef]

Brueck, S. R. J.

S. R. J. Brueck, “Optical and interferometric lithography - Nanotechnology enablers,” P IEEE 93(10), 1704–1721 (2005).
[CrossRef]

Cai, L. Z.

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49(10), 1663–1672 (2002).
[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
[CrossRef] [PubMed]

Carlen, E. T.

M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-Density Periodic Arrays of Self-Aligned Subwavelength Nanopyramids for Surface-Enhanced Raman Spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
[CrossRef]

Cerrina, F.

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Four-wave EUV interference lithography,” Microelectron. Eng. 61–62, 77–82 (2002).
[CrossRef]

Chan, C. T.

L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[CrossRef]

Choi, J.

J. H. Seo, J. H. Park, S. I. Kim, B. J. Park, Z. Q. Ma, J. Choi, and B. K. Ju, “Nanopatterning by Laser Interference Lithography: Applications to Optical Devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[CrossRef] [PubMed]

David, C.

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Four-wave EUV interference lithography,” Microelectron. Eng. 61–62, 77–82 (2002).
[CrossRef]

de Abajo, F. J. G.

B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. G. de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82(15), 155447 (2010).
[CrossRef]

de Boor, J.

Decker, J. Y.

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B 15(6), 2439–2443 (1997).
[CrossRef]

Echeverria, M.

M. Ellman, A. Rodriguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[CrossRef]

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[CrossRef]

Ellman, M.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[CrossRef]

M. Ellman, A. Rodriguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[CrossRef]

Fernandez, A.

A. Fernandez and D. W. Phillion, “Effects of phase shifts on four-beam interference patterns,” Appl. Opt. 37(3), 473–478 (1998).
[CrossRef] [PubMed]

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B 15(6), 2439–2443 (1997).
[CrossRef]

Gaylord, T. K.

Geyer, N.

Gobrecht, J.

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Four-wave EUV interference lithography,” Microelectron. Eng. 61–62, 77–82 (2002).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
[CrossRef]

Gösele, U.

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Herman, S. M.

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B 15(6), 2439–2443 (1997).
[CrossRef]

Hicks, E. M.

X. Y. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, “Advances in contemporary nanosphere lithographic techniques,” J. Nanosci. Nanotechnol. 6(7), 1920–1934 (2006).
[CrossRef] [PubMed]

Hsu, C. C.

Jin, M. L.

M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-Density Periodic Arrays of Self-Aligned Subwavelength Nanopyramids for Surface-Enhanced Raman Spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
[CrossRef]

Ju, B. K.

J. H. Seo, J. H. Park, S. I. Kim, B. J. Park, Z. Q. Ma, J. Choi, and B. K. Ju, “Nanopatterning by Laser Interference Lithography: Applications to Optical Devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[CrossRef] [PubMed]

Kim, S. I.

J. H. Seo, J. H. Park, S. I. Kim, B. J. Park, Z. Q. Ma, J. Choi, and B. K. Ju, “Nanopatterning by Laser Interference Lithography: Applications to Optical Devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[CrossRef] [PubMed]

Lai, N. D.

Liang, G. Q.

Liang, W. P.

Lin, C. H.

Lin, J. H.

Ma, Z. Q.

J. H. Seo, J. H. Park, S. I. Kim, B. J. Park, Z. Q. Ma, J. Choi, and B. K. Ju, “Nanopatterning by Laser Interference Lithography: Applications to Optical Devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[CrossRef] [PubMed]

Mao, W. D.

X. Zhang, M. Theuring, Q. Song, W. D. Mao, M. Begliarbekov, and S. Strauf, “Holographic Control of Motive Shape in Plasmonic Nanogap Arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[CrossRef] [PubMed]

W. D. Mao, G. Q. Liang, H. Zou, and H. Z. Wang, “Controllable fabrication of two-dimensional compound photonic crystals by single-exposure holographic lithography,” Opt. Lett. 31(11), 1708–1710 (2006).
[CrossRef] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Olaizola, S. M.

M. Ellman, A. Rodriguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[CrossRef]

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[CrossRef]

Otto, C.

M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-Density Periodic Arrays of Self-Aligned Subwavelength Nanopyramids for Surface-Enhanced Raman Spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
[CrossRef]

Park, B. J.

J. H. Seo, J. H. Park, S. I. Kim, B. J. Park, Z. Q. Ma, J. Choi, and B. K. Ju, “Nanopatterning by Laser Interference Lithography: Applications to Optical Devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[CrossRef] [PubMed]

Park, J. H.

J. H. Seo, J. H. Park, S. I. Kim, B. J. Park, Z. Q. Ma, J. Choi, and B. K. Ju, “Nanopatterning by Laser Interference Lithography: Applications to Optical Devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[CrossRef] [PubMed]

Peng, C. S.

M. Ellman, A. Rodriguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[CrossRef]

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[CrossRef]

Perez, N.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[CrossRef]

M. Ellman, A. Rodriguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[CrossRef]

Perry, M. D.

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B 15(6), 2439–2443 (1997).
[CrossRef]

Phillion, D. W.

A. Fernandez and D. W. Phillion, “Effects of phase shifts on four-beam interference patterns,” Appl. Opt. 37(3), 473–478 (1998).
[CrossRef] [PubMed]

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B 15(6), 2439–2443 (1997).
[CrossRef]

Pully, V.

M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-Density Periodic Arrays of Self-Aligned Subwavelength Nanopyramids for Surface-Enhanced Raman Spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
[CrossRef]

Rodriguez, A.

M. Ellman, A. Rodriguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[CrossRef]

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[CrossRef]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Savall, J.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[CrossRef]

Schmidt, V.

Seo, J. H.

J. H. Seo, J. H. Park, S. I. Kim, B. J. Park, Z. Q. Ma, J. Choi, and B. K. Ju, “Nanopatterning by Laser Interference Lithography: Applications to Optical Devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[CrossRef] [PubMed]

Solak, H. H.

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Four-wave EUV interference lithography,” Microelectron. Eng. 61–62, 77–82 (2002).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
[CrossRef]

Song, Q.

X. Zhang, M. Theuring, Q. Song, W. D. Mao, M. Begliarbekov, and S. Strauf, “Holographic Control of Motive Shape in Plasmonic Nanogap Arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[CrossRef] [PubMed]

Stay, J. L.

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Strauf, S.

X. Zhang and S. Strauf, “Formation of triplet and quadruplet plasmonic nanoarray templates by holographic lithography,” Appl. Phys. Lett. 102, 093110 (2013).

X. Zhang, M. Theuring, Q. Song, W. D. Mao, M. Begliarbekov, and S. Strauf, “Holographic Control of Motive Shape in Plasmonic Nanogap Arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[CrossRef] [PubMed]

Sweeney, D. W.

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B 15(6), 2439–2443 (1997).
[CrossRef]

Theuring, M.

X. Zhang, M. Theuring, Q. Song, W. D. Mao, M. Begliarbekov, and S. Strauf, “Holographic Control of Motive Shape in Plasmonic Nanogap Arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[CrossRef] [PubMed]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

van den Berg, A.

M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-Density Periodic Arrays of Self-Aligned Subwavelength Nanopyramids for Surface-Enhanced Raman Spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
[CrossRef]

Van Duyne, R. P.

X. Y. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, “Advances in contemporary nanosphere lithographic techniques,” J. Nanosci. Nanotechnol. 6(7), 1920–1934 (2006).
[CrossRef] [PubMed]

Verevkin, Y. K.

M. Ellman, A. Rodriguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[CrossRef]

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[CrossRef]

Wang, G. P.

L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[CrossRef]

Wang, H. Z.

Wang, L.

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Four-wave EUV interference lithography,” Microelectron. Eng. 61–62, 77–82 (2002).
[CrossRef]

Wang, Y. R.

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49(10), 1663–1672 (2002).
[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
[CrossRef] [PubMed]

Wang, Z.

M. Ellman, A. Rodriguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[CrossRef]

Wang, Z. B.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[CrossRef]

Whitney, A. V.

X. Y. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, “Advances in contemporary nanosphere lithographic techniques,” J. Nanosci. Nanotechnol. 6(7), 1920–1934 (2006).
[CrossRef] [PubMed]

Wong, K. S.

L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[CrossRef]

Wu, L. J.

L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[CrossRef]

Yang, X. L.

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
[CrossRef] [PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49(10), 1663–1672 (2002).
[CrossRef]

Zhang, X.

X. Zhang and S. Strauf, “Formation of triplet and quadruplet plasmonic nanoarray templates by holographic lithography,” Appl. Phys. Lett. 102, 093110 (2013).

X. Zhang, M. Theuring, Q. Song, W. D. Mao, M. Begliarbekov, and S. Strauf, “Holographic Control of Motive Shape in Plasmonic Nanogap Arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[CrossRef] [PubMed]

Zhang, X. Y.

X. Y. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, “Advances in contemporary nanosphere lithographic techniques,” J. Nanosci. Nanotechnol. 6(7), 1920–1934 (2006).
[CrossRef] [PubMed]

Zhao, J.

X. Y. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, “Advances in contemporary nanosphere lithographic techniques,” J. Nanosci. Nanotechnol. 6(7), 1920–1934 (2006).
[CrossRef] [PubMed]

Zhong, Y. C.

L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[CrossRef]

Zou, H.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

X. Zhang and S. Strauf, “Formation of triplet and quadruplet plasmonic nanoarray templates by holographic lithography,” Appl. Phys. Lett. 102, 093110 (2013).

L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86(24), 241102 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

M. Ellman, A. Rodriguez, N. Perez, M. Echeverria, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. Wang, S. M. Olaizola, and I. Ayerdi, “High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation,” Appl. Surf. Sci. 255(10), 5537–5541 (2009).
[CrossRef]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49(10), 1663–1672 (2002).
[CrossRef]

J. Nanosci. Nanotechnol. (2)

J. H. Seo, J. H. Park, S. I. Kim, B. J. Park, Z. Q. Ma, J. Choi, and B. K. Ju, “Nanopatterning by Laser Interference Lithography: Applications to Optical Devices,” J. Nanosci. Nanotechnol. 14(2), 1521–1532 (2014).
[CrossRef] [PubMed]

X. Y. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, “Advances in contemporary nanosphere lithographic techniques,” J. Nanosci. Nanotechnol. 6(7), 1920–1934 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-Density Periodic Arrays of Self-Aligned Subwavelength Nanopyramids for Surface-Enhanced Raman Spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
[CrossRef]

J. Vac. Sci. Technol. B (2)

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B 15(6), 2439–2443 (1997).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
[CrossRef]

Microelectron. Eng. (2)

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Four-wave EUV interference lithography,” Microelectron. Eng. 61–62, 77–82 (2002).
[CrossRef]

Nano Lett. (1)

X. Zhang, M. Theuring, Q. Song, W. D. Mao, M. Begliarbekov, and S. Strauf, “Holographic Control of Motive Shape in Plasmonic Nanogap Arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

P IEEE (1)

S. R. J. Brueck, “Optical and interferometric lithography - Nanotechnology enablers,” P IEEE 93(10), 1704–1721 (2005).
[CrossRef]

Phys. Rev. B (1)

B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. G. de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82(15), 155447 (2010).
[CrossRef]

Other (2)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light 2nd Edition, 1–286 (Princeton University Press, 2008).

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, 1–200 (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

a) Geometry of the four-beam interference occurring with the incidence of a large-diameter collimated beam onto a corner reflector-like interferometer. Different parts of the beam wavefront hit different parts of both the mirror and sample, resulting in an interference of the directly incident, once reflected, and two-times reflected beams. The light-blue area is exposed by all four beams, while the dark-blue area by only two incident beams. Side (b) and top (c) views of the symmetry of the directly incident (1) and reflected (2-4) coherent beams.

Fig. 2
Fig. 2

Calculated interference patterns for λ = 325 nm and different angles of incidence and declinations of the polarization plane νpol of the incoming beam: a) θ = 5°, φ = 0, νpol = 5°, b) θ = 5°, φ = 25°, νpol = 0, c) θ = 75°, φ = 0, νpol = 0, d) θ = 30°, φ = 0, νpol = 0, e) θ = 30°, φ = 0, νpol = 21°. Interference pattern obtained by superimposition of two, two-beam interference patterns (angle between coherent beams in each of two-beam interference is 90°) perpendicular to each other (f).

Fig. 3
Fig. 3

a) Layout of the 4-beam interferometer based on right-angle corner reflector-like interferometer made of two mirrors and base plate with the photoresist-coated substrate. b) Photograph of the corner reflector-like interferometer with two rotation axes.

Fig. 4
Fig. 4

a) Modulation of the interference pattern as a consequence of the misalignment of the mirrors by γdev = 2 deg. b) Scheme of the optical adjustment of the perpendicularity of the interferometer mirrors using a shear plate (transparent plate with the front and back surface oriented to form a slight wedge).

Fig. 5
Fig. 5

Scheme of the fabrication procedure used herein: 4-beam interferometric exposure (1), wet development (2), optional deposition of a contact mask (3), deposition of plasmonic metal (4), and lift-off of the sacrificial layers with or without the contact mask (5).

Fig. 6
Fig. 6

AFM images of the nanostructured photoresist layers (top) and calculated interference patterns (bottom) for three different geometries of the interfering beams during the exposure. Parameters of the exposure, i.e. angles θ and φ, polarization angle νpol, exposure dose Dinc, development time td and resulting periods of the prepared arrays Λx and Λy were as follows: a) Dinc = 10.2 mJ/cm2, td = 45s, θ = 50°, φ = 0°, νpol = 30°, Λx = Λy = 357 nm; b) Dinc = 17.1 mJ/cm2, td = 5s (ultrasound assisted development), θ = 62,6°, φ = 0°, νpol = 0°, Λx = Λy = 500 nm; c) Dinc = 13.5 mJ/cm2; td = 30s, θ = 63.5°, φ = 15°, νpol = 0°, Λx = 1335 nm, Λy = 333 nm.

Fig. 7
Fig. 7

(a) Photograph of the patterned photoresist prepared on a silicon wafer and subsequently coated with a gold film. Points 1-6 indicate locations of the SEM measurements that resulted in the micrographs shown in (b). Parameters of the exposure were Dinc = 14.9 mJ/cm2, td = 30s, θ = 72°, φ = 2°, νpol = 0°. This exposure resulted in a pattern with periods Λx = 838 nm and Λy = 670 nm.

Fig. 8
Fig. 8

SEM images of the plasmonic arrays prepared on different types of substrates - (a) bare glass substrate and (b) low-index polymer (Cytop, thickness 950 nm)-coated glass substrate, under following conditions during the interferometric exposure: a) Dinc = 11.2 mJ/cm2, θ = 44°, φ = 2°, νpol = 35°; b) Dinc = 11.95 mJ/cm2, θ = 60.2°, φ = 0.5°, νpol = 0°, td = 30s.

Fig. 9
Fig. 9

SEM micrographs of the prepared sparse plasmonic array on a SF2 substrate before the lift-off of the nanostructured photoresist with a contact SiO2 mask and a gold layer with 50 nm thickness (a) and detail (b) and low-magnification image (c) of the prepared array after the lift-off of the sacrificial layers. AFM scan of the surface of the same array is shown in (d).

Fig. 10
Fig. 10

Transmission spectra (solid lines) collected at normal incidence from five different locations of a plasmonic array sample (see inset) in two orthogonal linear polarizations (oriented along both axes of the elliptical footprint of the nanoparticles). Transmission spectra calculated using FDTD for particles approximated as elliptical cylinders with axes of 91 nm and 125 nm and height of 50 nm (dashed lines) are shown for comparison.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E n = E n e n exp( i k n r+ ϕ n ),
I( r )= m=1 4 E m 2 +2 m=2 4 n<m E m E n V mn cos[ ( k m k n )r+ ϕ m ϕ n ] ,
k 1 = 2 π λ ( cosφcosθ+sinφ cosφcosθsinφ 2 sinθcosφ ), k 2 = 2 π λ ( cosφcosθ+sinφ +cosφcosθ+sinφ 2 sinθcosφ ) k 3 = 2 π λ ( cosφcosθsinφ cosφcosθsinφ 2 sinθcosφ ), k 4 = 2 π λ ( cosφcosθsinφ +cosφcosθ+sinφ 2 sinθcosφ )
Λ x = λ 2 ( cosθcosφsinφ ) , Λ y = λ 2 ( cosθcosφ+sinφ ) .

Metrics