Abstract

In this work we experimentally investigate the improved intra-channel fiber nonlinearity tolerance of digital subcarrier multiplexed (SCM) signals in a single-channel coherent optical transmission system. The digital signal processing (DSP) for the generation and reception of the SCM signals is described. We show experimentally that the SCM signal with a nearly-optimum number of subcarriers can extend the maximum reach by 23% in a 24 GBaud DP-QPSK transmission with a BER threshold of 3.8 × 10−3 and by 8% in a 24 GBaud DP-16-QAM transmission with a BER threshold of 2 × 10−2. Moreover, we show by simulations that the improved performance of SCM signals is observed over a wide range of baud rates, further indicating the merits of SCM signals in baud-rate flexible agile transmissions and future high-speed optical transport systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [CrossRef]
  2. L. B. Du and A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express 18(16), 17075–17088 (2010).
    [CrossRef] [PubMed]
  3. E. F. Mateo, X. Zhou, and G. Li, “Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems,” Opt. Express 19(2), 570–583 (2011).
    [CrossRef] [PubMed]
  4. Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightwave Technol. 29(17), 2570–2576 (2011).
    [CrossRef]
  5. Y. Gao, A. S. Karar, J. C. Cartledge, S. S.-H. Yam, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Simplified nonlinearity pre-compensation using a modified summation criteria and non-uniform power profile,” in Proc. OFC (2014), paper Tu3A.6.
    [CrossRef]
  6. Q. Zhuge, M. Reimer, A. Borowiec, M. O’Sullivan, and D. Plant, “Aggressive quantization on perturbation coefficients for nonlinear pre-distortion,” in Proc. OFC (2014), paper Th4D.7.
    [CrossRef]
  7. N. Stojanovic, Y. Huang, F. N. Hauske, Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112 Gbit/s PDM-QPSK transmission with digital coherent receiver,” in Proc. Opt. Commun. Conf. (2011), paper OWW6.
    [CrossRef]
  8. B. Châtelain, C. Laperle, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, and D. V. Plant, “A family of Nyquist pulses for coherent optical communications,” Opt. Express 20(8), 8397–8416 (2012).
    [CrossRef] [PubMed]
  9. X. Xu, B. Châtelain, Q. Zhuge, M. Morsy-Osman, M. Chagnon, M. Qiu, and D. Plant, “Frequency domain M-shaped pulse for SPM nonlinearity mitigation in coherent optical communications,” in Proc. OFC (2013), paper JTh2A.38.
    [CrossRef]
  10. L. B. Du and A. J. Lowery, “Optimizing the subcarrier granularity of coherent optical communications systems,” Opt. Express 19(9), 8079–8084 (2011).
    [CrossRef] [PubMed]
  11. A. Bononi, N. Rossi, and P. Serena, “Performance dependence on channel baud-rate of coherent single-carrier WDM systems,” in Proc. ECOC (2013), paper Th.1.D.5.
    [CrossRef]
  12. W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photon. J. 2(3), 276–283 (2010).
    [CrossRef]
  13. Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
    [CrossRef]
  14. Q. Zhuge, B. Chatelain, and D. Plant, “Comparison of intra-channel nonlinearity tolerance between reduced-guard-interval CO-OFDM systems and Nyquist single carrier systems,” in Proc. OFC (2012), paper OTh1B.3.
    [CrossRef]
  15. Y. Zhu, J. Wang, Q. Guo, Y. Cui, C. Li, F. Zhu, and Y. Bai, “Experimental comparison of terabit Nyquist superchannel transmissions based on high and low baud rates,” in Proc. OFC (2013), paper JW2A.37.
    [CrossRef]
  16. M. Qiu, Q. Zhuge, X. Xu, M. Chagnon, M. Morsy-Osman, and D. Plant, “Subcarrier multiplexing using DACs for fiber nonlinearity mitigation in coherent optical communication systems,” in Proc. OFC (2014), paper Tu3J.2.
    [CrossRef]
  17. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [CrossRef]
  18. M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
    [CrossRef]
  19. Q. Zhuge, M. Morsy-Osman, X. Xu, M. E. Mousa-Pasandi, M. Chagnon, Z. A. El-Sahn, and D. V. Plant, “Pilot-aided carrier phase recovery for M-QAM using superscalar parallelization based PLL,” Opt. Express 20(17), 19599–19609 (2012).
    [CrossRef] [PubMed]
  20. L. Liu, Z. Tao, W. Yan, S. Oda, T. Hoshida, and J. Rasmussen, “Initial tap setup of constant modulus algorithm for polarization de-multiplexing in optical coherent receivers,” in Proc. OFC (2009), paper OMT2.
    [CrossRef]

2012 (2)

2011 (3)

2010 (4)

L. B. Du and A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express 18(16), 17075–17088 (2010).
[CrossRef] [PubMed]

W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photon. J. 2(3), 276–283 (2010).
[CrossRef]

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
[CrossRef]

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

2008 (1)

1988 (1)

M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
[CrossRef]

Borowiec, A.

Chagnon, M.

Châtelain, B.

Dou, L.

Du, L. B.

El-Sahn, Z. A.

Gagnon, F.

Hoshida, T.

Ip, E.

Kahn, J. M.

Krongold, B. S.

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
[CrossRef]

Laperle, C.

Li, G.

Li, L.

Lowery, A. J.

Mateo, E. F.

Meyr, H.

M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
[CrossRef]

Morsy-Osman, M.

Mousa-Pasandi, M. E.

Oerder, M.

M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
[CrossRef]

Plant, D. V.

Rasmussen, J. C.

Roberts, K.

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

Shieh, W.

W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photon. J. 2(3), 276–283 (2010).
[CrossRef]

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
[CrossRef]

Tang, Y.

W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photon. J. 2(3), 276–283 (2010).
[CrossRef]

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
[CrossRef]

Tao, Z.

Xu, X.

Yan, W.

Zhou, X.

Zhuge, Q.

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

IEEE Photon. J. (1)

W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photon. J. 2(3), 276–283 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
[CrossRef]

IEEE Trans. Commun. (1)

M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (5)

Other (9)

A. Bononi, N. Rossi, and P. Serena, “Performance dependence on channel baud-rate of coherent single-carrier WDM systems,” in Proc. ECOC (2013), paper Th.1.D.5.
[CrossRef]

L. Liu, Z. Tao, W. Yan, S. Oda, T. Hoshida, and J. Rasmussen, “Initial tap setup of constant modulus algorithm for polarization de-multiplexing in optical coherent receivers,” in Proc. OFC (2009), paper OMT2.
[CrossRef]

Q. Zhuge, B. Chatelain, and D. Plant, “Comparison of intra-channel nonlinearity tolerance between reduced-guard-interval CO-OFDM systems and Nyquist single carrier systems,” in Proc. OFC (2012), paper OTh1B.3.
[CrossRef]

Y. Zhu, J. Wang, Q. Guo, Y. Cui, C. Li, F. Zhu, and Y. Bai, “Experimental comparison of terabit Nyquist superchannel transmissions based on high and low baud rates,” in Proc. OFC (2013), paper JW2A.37.
[CrossRef]

M. Qiu, Q. Zhuge, X. Xu, M. Chagnon, M. Morsy-Osman, and D. Plant, “Subcarrier multiplexing using DACs for fiber nonlinearity mitigation in coherent optical communication systems,” in Proc. OFC (2014), paper Tu3J.2.
[CrossRef]

X. Xu, B. Châtelain, Q. Zhuge, M. Morsy-Osman, M. Chagnon, M. Qiu, and D. Plant, “Frequency domain M-shaped pulse for SPM nonlinearity mitigation in coherent optical communications,” in Proc. OFC (2013), paper JTh2A.38.
[CrossRef]

Y. Gao, A. S. Karar, J. C. Cartledge, S. S.-H. Yam, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Simplified nonlinearity pre-compensation using a modified summation criteria and non-uniform power profile,” in Proc. OFC (2014), paper Tu3A.6.
[CrossRef]

Q. Zhuge, M. Reimer, A. Borowiec, M. O’Sullivan, and D. Plant, “Aggressive quantization on perturbation coefficients for nonlinear pre-distortion,” in Proc. OFC (2014), paper Th4D.7.
[CrossRef]

N. Stojanovic, Y. Huang, F. N. Hauske, Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112 Gbit/s PDM-QPSK transmission with digital coherent receiver,” in Proc. Opt. Commun. Conf. (2011), paper OWW6.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Power spectra of the SC signal and SCM signals.

Fig. 2
Fig. 2

Illustration of (a) the transmitter-side DSP for subcarrier multiplexing and (b) the receiver-side DSP for subcarrier de-multiplexing.

Fig. 3
Fig. 3

Experimental setup. ECL: external cavity laser, PC: polarization controller, PBS/PBC: polarization beam splitter/combiner, ODL: optical delay line, VOA: variable optical attenuator, SW: switch, CRx: coherent receiver.

Fig. 4
Fig. 4

Simulated Q2 factor versus transmission distance of SC and SCM signals in a 24 GBaud (a) QPSK transmission and (b) 16-QAM transmission.

Fig. 5
Fig. 5

Back-to-back performance of different signals with a modulation format of (a) QPSK and (b) 16-QAM.

Fig. 6
Fig. 6

BER under different launch powers in (a) QPSK transmission (at 5760 km) and (b) 16-QAM transmission (at 1920 km).

Fig. 7
Fig. 7

Maximum transmission distance of different signals in (a) QPSK transmission with a BER threshold of 3.8 × 10−3 and (b) 16-QAM transmission with a BER threshold of 2 × 10−2.

Fig. 8
Fig. 8

Simulated Q2 factors (with the optimum launch power) of different signals with various total baud rates (a) at 6400 km in the QPSK system and (b) at 1920 km in the 16-QAM system.

Metrics