Abstract

This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1–3), 40–61 (2000).
    [CrossRef]
  2. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry - Perot wavelength filter,” Opt. Lett. 18(16), 1370–1372 (1993).
    [CrossRef] [PubMed]
  3. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [CrossRef]
  4. Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
    [CrossRef]
  5. B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133 (2001).
  6. J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
    [CrossRef]
  7. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
    [CrossRef] [PubMed]
  8. F. Shen and A. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers,” Appl. Opt. 44(25), 5206–5214 (2005).
    [CrossRef] [PubMed]
  9. J. Huang, L. Hua, X. Lan, T. Wei, and H. Xiao, “Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing,” Opt. Express 21(15), 18152–18159 (2013).
    [CrossRef] [PubMed]
  10. B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
    [CrossRef]
  11. L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem. 169, 167–172 (2012).
    [CrossRef]
  12. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt. 37(10), 1735–1740 (1998).
    [CrossRef] [PubMed]
  13. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
    [CrossRef]
  14. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
    [CrossRef]
  15. J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
    [CrossRef]
  16. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005).
    [CrossRef]
  17. K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12(5), 730–736 (1994).
    [CrossRef]
  18. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
    [CrossRef]
  19. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [CrossRef] [PubMed]
  20. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
    [CrossRef] [PubMed]
  21. J. Huang, X. Lan, H. Wang, L. Yuan, and H. Xiao, “Optical carrier-based microwave interferometers for sensing application,” Proc. SPIE 9098, 90980H (2014).
  22. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1(6), 319–330 (2007).
    [CrossRef]
  23. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  24. K. Bisshopp and D. Drucker, “Large deflection of cantilever beams,” Q. Appl. Math. 3, 273–275 (1945).

2014 (1)

J. Huang, X. Lan, H. Wang, L. Yuan, and H. Xiao, “Optical carrier-based microwave interferometers for sensing application,” Proc. SPIE 9098, 90980H (2014).

2013 (1)

2012 (1)

L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem. 169, 167–172 (2012).
[CrossRef]

2011 (2)

Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
[CrossRef]

Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (2)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1(6), 319–330 (2007).
[CrossRef]

2005 (2)

2001 (1)

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133 (2001).

2000 (1)

K. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1–3), 40–61 (2000).
[CrossRef]

1999 (1)

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[CrossRef]

1998 (1)

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

1995 (1)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[CrossRef]

1994 (1)

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12(5), 730–736 (1994).
[CrossRef]

1993 (1)

1985 (2)

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[CrossRef]

1981 (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[CrossRef]

1945 (1)

K. Bisshopp and D. Drucker, “Large deflection of cantilever beams,” Q. Appl. Math. 3, 273–275 (1945).

Alahbabi, M. N.

Allison, S. G.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133 (2001).

Ang, X.

L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem. 169, 167–172 (2012).
[CrossRef]

Balamurali, P.

L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem. 169, 167–172 (2012).
[CrossRef]

Bao, X.

Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
[CrossRef] [PubMed]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[CrossRef]

Batten, C. F.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133 (2001).

Berkoff, T. A.

Bi, W.

Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
[CrossRef]

Bibby, G.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Bisshopp, K.

K. Bisshopp and D. Drucker, “Large deflection of cantilever beams,” Q. Appl. Math. 3, 273–275 (1945).

Bolognini, G.

Brooks, J. L.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1(6), 319–330 (2007).
[CrossRef]

Chan, C. C.

L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem. 169, 167–172 (2012).
[CrossRef]

Chen, L.

L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem. 169, 167–172 (2012).
[CrossRef]

Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
[CrossRef] [PubMed]

Childers, B. A.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133 (2001).

Cho, Y. T.

Dakin, J.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[CrossRef]

Di Pasquale, F.

Dong, B.

Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
[CrossRef]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
[CrossRef] [PubMed]

Dong, Y.

Drucker, D.

K. Bisshopp and D. Drucker, “Large deflection of cantilever beams,” Q. Appl. Math. 3, 273–275 (1945).

Eickhoff, W.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[CrossRef]

Froggatt, M.

Froggatt, M. E.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133 (2001).

Gong, J.

Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
[CrossRef]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
[CrossRef] [PubMed]

Grattan, K.

K. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1–3), 40–61 (2000).
[CrossRef]

Han, M.

Hare, D. A.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133 (2001).

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[CrossRef]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

Hogari, K.

Horiguchi, T.

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12(5), 730–736 (1994).
[CrossRef]

Hua, L.

Huang, J.

J. Huang, X. Lan, H. Wang, L. Yuan, and H. Xiao, “Optical carrier-based microwave interferometers for sensing application,” Proc. SPIE 9098, 90980H (2014).

J. Huang, L. Hua, X. Lan, T. Wei, and H. Xiao, “Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing,” Opt. Express 21(15), 18152–18159 (2013).
[CrossRef] [PubMed]

Imahama, M.

Jackson, D. A.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[CrossRef]

Jegley, D. C.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133 (2001).

Kazemi, A.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[CrossRef]

Kersey, A. D.

Kim, B. Y.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[CrossRef]

Koyamada, Y.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12(5), 730–736 (1994).
[CrossRef]

Kubota, K.

Kurashima, T.

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12(5), 730–736 (1994).
[CrossRef]

Lally, E.

Lan, X.

J. Huang, X. Lan, H. Wang, L. Yuan, and H. Xiao, “Optical carrier-based microwave interferometers for sensing application,” Proc. SPIE 9098, 90980H (2014).

J. Huang, L. Hua, X. Lan, T. Wei, and H. Xiao, “Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing,” Opt. Express 21(15), 18152–18159 (2013).
[CrossRef] [PubMed]

Leong, K. C.

L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem. 169, 167–172 (2012).
[CrossRef]

Li, T.

L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem. 169, 167–172 (2012).
[CrossRef]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

Menon, R.

L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem. 169, 167–172 (2012).
[CrossRef]

Moore, J.

Moore, T. C.

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133 (2001).

Morey, W. W.

Neu, B.

L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem. 169, 167–172 (2012).
[CrossRef]

Newson, T. P.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1(6), 319–330 (2007).
[CrossRef]

Pratt, D.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Ross, J.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Shaillender, M.

L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem. 169, 167–172 (2012).
[CrossRef]

Shaw, H.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[CrossRef]

Shen, F.

Shimizu, K.

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12(5), 730–736 (1994).
[CrossRef]

Soto, M. A.

Sun, T.

K. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1–3), 40–61 (2000).
[CrossRef]

Sutapun, B.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[CrossRef]

Tabib-Azar, M.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[CrossRef]

Thévenaz, L.

Tur, M.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[CrossRef]

Ulrich, R.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[CrossRef]

Wang, A.

Wang, H.

J. Huang, X. Lan, H. Wang, L. Yuan, and H. Xiao, “Optical carrier-based microwave interferometers for sensing application,” Proc. SPIE 9098, 90980H (2014).

Wang, J.

Wang, Y.

Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
[CrossRef]

Webb, D. J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[CrossRef]

Wei, T.

Wentworth, R. H.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[CrossRef]

Wong, W.

L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem. 169, 167–172 (2012).
[CrossRef]

Xiao, H.

J. Huang, X. Lan, H. Wang, L. Yuan, and H. Xiao, “Optical carrier-based microwave interferometers for sensing application,” Proc. SPIE 9098, 90980H (2014).

J. Huang, L. Hua, X. Lan, T. Wei, and H. Xiao, “Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing,” Opt. Express 21(15), 18152–18159 (2013).
[CrossRef] [PubMed]

Yao, J.

Youngquist, R. C.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[CrossRef]

Yuan, L.

J. Huang, X. Lan, H. Wang, L. Yuan, and H. Xiao, “Optical carrier-based microwave interferometers for sensing application,” Proc. SPIE 9098, 90980H (2014).

Zu, P.

L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem. 169, 167–172 (2012).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[CrossRef]

Electron. Lett. (1)

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Wang, J. Gong, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
[CrossRef]

J. Lightwave Technol. (6)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12(5), 730–736 (1994).
[CrossRef]

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3(5), 1062–1072 (1985).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[CrossRef]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[CrossRef]

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1(6), 319–330 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Proc. SPIE (2)

J. Huang, X. Lan, H. Wang, L. Yuan, and H. Xiao, “Optical carrier-based microwave interferometers for sensing application,” Proc. SPIE 9098, 90980H (2014).

B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, and D. C. Jegley, “Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” Proc. SPIE 4332, 133 (2001).

Q. Appl. Math. (1)

K. Bisshopp and D. Drucker, “Large deflection of cantilever beams,” Q. Appl. Math. 3, 273–275 (1945).

Sens. Actuators A Phys. (1)

K. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1–3), 40–61 (2000).
[CrossRef]

Sens. Actuators B Chem. (2)

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[CrossRef]

L. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. Ang, P. Zu, W. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B Chem. 169, 167–172 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the fundamental concept of the spatially continuous distributed sensing using cascaded FPIs. The segmentation is achieved by implementing a time-gating function with two windows to isolate two arbitrary reflections (e.g., Γi and Γj) for reconstruction of the microwave interferogram, whose spectral shift is proportional to the length change of the segment between the i-th and j-th reflectors (i.e., Δdij).

Fig. 2
Fig. 2

Simulation of 8 reflectors along a single-mode fiber. The optical reflectivity is equally distributed. The locations of the reflectors are 0.5, 0.6, 0.8, 0.9, 1, 1.1, 1.4, 1.8 m, respectively. (a) Calculated amplitude spectrum (Aeff) based on Eq. (11). (b) Calculated phase spectrum (Φeff) based on Eq. (11). (c) Calculated time/spatial domain result based on Eq. (12). (d) Calculated microwave interferogram of the 4th and 5th reflectors based on Eq. (13).

Fig. 3
Fig. 3

Schematic of the OCMI system used to support proof-of-concept experiments. A broadband light source (bandwidth ≈50 nm) is intensity-modulated using an electro-optic modulator driven by the microwave output (DC-biased and amplified) from Port 1 of a VNA. The output from the fiber interferometer is detected by a photodetector whose signal, after DC-filtering and RF amplification, is recorded at Port 2 where the amplitude and phase of the signal are extracted. By sweeping the VNA frequency, the microwave spectrum of the interferometer is obtained (i.e., the S21 of the VNA).

Fig. 4
Fig. 4

Validation of the distributed sensing capability of OCMI. (a) SMF distributed sensors with 6 reflectors implanted to divide the entire length into 5 sections, (b) Time resolved reflections along the optical fiber and time gating window to isolate Section 3, (c) Reconstructed microwave interferogram of Section 3, (d) Zoomed interference spectra at different strains, (e) 3D view of the distributed OCMI fiber sensor in response to axial strains applied to Section 3 only, and (f) Frequency shift as a function of the applied strain.

Fig. 5
Fig. 5

(a) Schematic illustration of the experiment setup to validate the distributed strain sensing capability of OCMI. (b) Amplitude spectrum and (c) phase spectrum of the distributed sensor systems. (d) Time/distance resolved reflections along the optical fiber where the 10 weak reflections can be clearly identified with excellent SNR. (e) Reconstructed microwave interferogram of Section 8. (f) Confocal microscopic image of a weak reflector fabricated by femtosecond laser micromachining. Using water immersion fabrication, the focused fs laser beam penetrated into the fiber and ablated a very small region inside the fiber core. The reflector has a typical reflectivity of about −45 dB and a typical loss of about 0.02 dB. (g) Measured strain distribution at the different sections along the beam under different amounts of deflections.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E o =Aexp{ j[ ωt+φ ] }
s(t)=Mcos( Ωt+ϕ )
E=m(t) E o
m(t)= 1+s(t) = 1+Mcos( Ωt+ϕ )
E total = i=1 N E i ( t, z i ) = i=1 N m i ( t, z i ) E o,i ( t, z i )
E o,i ( t, z i )= Γ i Aexp{ j[ ω( t+ 2 z i n c ) ] }
m( t, z i )= 1+Mcos[ Ω( t+ W c + 2 z i n c ) ]
| E total | 2 = 1 Δω ω min ω max | i=1 N E i ( t, z i ) | 2 dω = 1 Δω ( ω min ω max i=1 N | E( t, z i ) | 2 dω + ω min ω max i=1,j=1,ij N [ E( t, z i ) E * ( t, z j )+ E * ( t, z i )E( t, z j ) ] dω )
1 Δω ω min ω max i=1,j=1,ij N [ E( t, z i ) E * ( t, z j )+ E * ( t, z i )E( t, z j ) ] dω = 2 Δω i=1,j=1,ij N m( t, z i )m( t, z j ) Γ i Γ j A 2 ω min ω max { cos[ 2ω c ( z 1 z 2 )n ] }dω
1 Δω ω min ω max i=1 N | E( t, z i ) | 2 dω = i=1 N Γ i 2 A 2 + i=1 N Γ i 2 A 2 Mcos[ Ω( t+ W c + 2 z i n c ) ]
S= A eff cos( Ωt+ Φ eff )
A eff =g i,j N A eff,i A eff,j cos( ϕ eff,i ϕ eff,j )
Φ eff =arctan[ i N Γ i 2 sin[ Ω( W c + 2 z i n c ) ] i,j N Γ i 2 cos[ Ω( W c + 2 z i n c ) ] ], Φ eff { π,π }
A eff,i = Γ i 2 A 2 M, A eff,j = Γ j 2 A 2 M ϕ eff,i = Γ i 2 A 2 M( W c + 2 z i n c ) ϕ eff,j = Γ j 2 A 2 M( W c + 2 z j n c )
Χ( t )= 1 2π Ω min Ω max Sexp( jΩt )dΩ = 1 2π Ω min Ω max i=1 N Γ i 2 A 2 Mcos[ Ω( t+ W c + 2 z i n c ) ] exp( jΩt )dΩ = i=1 N Γ i 2 A 2 M| sinc[ ( Ω max Ω min )( t+ τ i ) ] |
S OCMI =SG( Ω )exp( iΩ τ 0 )
OPD = d ij =| 2( z i z j )n |
FSR= c OPD

Metrics