Abstract

We explore possibilities of waveguide-mode interference lithography (WMIL) technique for high contrast subwavelength structures in the visible region. Selecting an appropriate waveguide-mode, we demonstrate high contrast resist mask patterns for the first time. TM1 mode in the waveguide is shown to be useful for providing a three-dimensional structure whose cross section is checkerboard pattern. Applying our WMIL technique, we demonstrate 1D, 2D and 3D subwavelength resist patterns that are widely used for the fabrication of metamteterials in the visible region. In addition to the resist patterns, we demonstrate a resonance at 1.9 eV for a split tube structure experimentally.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  3. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
    [CrossRef] [PubMed]
  4. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
    [CrossRef]
  5. C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
    [CrossRef]
  6. R. J. Blaikie and S. J. McNab, “Evanescent interferometric lithography,” Appl. Opt. 40(10), 1692–1698 (2001).
    [CrossRef] [PubMed]
  7. X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
    [CrossRef]
  8. K. V. Sreekanth, J. K. Chua, and V. M. Murukeshan, “Interferometric lithography for nanoscale feature patterning: a comparative analysis between laser interference, evanescent wave interference, and surface plasmon interference,” Appl. Opt. 49(35), 6710–6717 (2010).
    [CrossRef] [PubMed]
  9. X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
    [CrossRef]
  10. SCHOTT, “Optical glass Data Sheets”, http://www.schott.com/ .
  11. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 1991).
  12. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [CrossRef] [PubMed]
  13. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [CrossRef]
  14. C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
    [CrossRef] [PubMed]
  15. A. Ishikawa, T. Tanaka, and S. Kawata, “Frequency dependence of the magnetic response of split-ring resonators,” JOSA B 24(3), 510–515 (2007).
    [CrossRef]
  16. B. Q. Dong, F. Zhou, C. Wang, X. F. Chen, Z. Zhang, C. Stuart, and C. Sun, “Optical magnetism of a vertical split-ring resonator metasurface,” in The 11th International Symposium on Photonic and Electromagnetic Crystal Structures (2014), paper O-32.

2013 (3)

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[CrossRef]

X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[CrossRef]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[CrossRef]

2011 (1)

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[CrossRef] [PubMed]

2010 (1)

2007 (2)

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[CrossRef] [PubMed]

A. Ishikawa, T. Tanaka, and S. Kawata, “Frequency dependence of the magnetic response of split-ring resonators,” JOSA B 24(3), 510–515 (2007).
[CrossRef]

2005 (2)

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef] [PubMed]

2004 (1)

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[CrossRef]

2001 (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

R. J. Blaikie and S. J. McNab, “Evanescent interferometric lithography,” Appl. Opt. 40(10), 1692–1698 (2001).
[CrossRef] [PubMed]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[CrossRef]

Blaikie, R. J.

Cai, W.

Chen, Y.

X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[CrossRef]

Chettiar, U. K.

Chua, J. K.

Dickson, W.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[CrossRef] [PubMed]

Dolling, G.

Drachev, V. P.

Engheta, N.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[CrossRef]

Enkrich, C.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

García-Meca, C.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[CrossRef] [PubMed]

Gerthsen, D.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

Hurtado, J.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[CrossRef] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[CrossRef]

Ishihara, T.

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[CrossRef]

Ishikawa, A.

A. Ishikawa, T. Tanaka, and S. Kawata, “Frequency dependence of the magnetic response of split-ring resonators,” JOSA B 24(3), 510–515 (2007).
[CrossRef]

Kawata, S.

A. Ishikawa, T. Tanaka, and S. Kawata, “Frequency dependence of the magnetic response of split-ring resonators,” JOSA B 24(3), 510–515 (2007).
[CrossRef]

Kildishev, A. V.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[CrossRef]

Koschny, T.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

Linden, S.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[CrossRef] [PubMed]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

Luo, X. G.

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[CrossRef]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[CrossRef]

Martí, J.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[CrossRef] [PubMed]

Martínez, A.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[CrossRef] [PubMed]

McNab, S. J.

Ming, H.

X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[CrossRef]

Murukeshan, V. M.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[CrossRef]

Pérez-Willard, F.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[CrossRef]

Polman, A.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[CrossRef]

Sarychev, A. K.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[CrossRef] [PubMed]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

Sreekanth, K. V.

Tanaka, T.

A. Ishikawa, T. Tanaka, and S. Kawata, “Frequency dependence of the magnetic response of split-ring resonators,” JOSA B 24(3), 510–515 (2007).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Wang, P.

X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[CrossRef]

Wang, X.

X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[CrossRef]

Wegener, M.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[CrossRef] [PubMed]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

Wu, W.

X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[CrossRef]

Yao, P.

X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[CrossRef]

Yu, W.

X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[CrossRef]

Yuan, H.-K.

Zayats, A. V.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[CrossRef] [PubMed]

Zhang, D.

X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[CrossRef]

Zhang, Q.

X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[CrossRef]

Zhou, J. F.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

Zhu, L.

X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[CrossRef]

Adv. Mater. (1)

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[CrossRef]

X. Wang, D. Zhang, Y. Chen, L. Zhu, W. Yu, P. Wang, P. Yao, H. Ming, W. Wu, and Q. Zhang, “Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography,” Appl. Phys. Lett. 102(3), 031103 (2013).
[CrossRef]

JOSA B (1)

A. Ishikawa, T. Tanaka, and S. Kawata, “Frequency dependence of the magnetic response of split-ring resonators,” JOSA B 24(3), 510–515 (2007).
[CrossRef]

Nat. Photonics (2)

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[CrossRef]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Other (3)

SCHOTT, “Optical glass Data Sheets”, http://www.schott.com/ .

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 1991).

B. Q. Dong, F. Zhou, C. Wang, X. F. Chen, Z. Zhang, C. Stuart, and C. Sun, “Optical magnetism of a vertical split-ring resonator metasurface,” in The 11th International Symposium on Photonic and Electromagnetic Crystal Structures (2014), paper O-32.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for the waveguide mode interference lithography. PBS denotes Polarization Beam Splitter. The polarization direction is corresponding to using the TM modes.

Fig. 2
Fig. 2

Example of a bilayered waveguide sample. Configuration of simulation (a) and simulated results of electric field distribution (b). AFM image of top view (c) and bird’s-eye view and the results of its cross-section analysis (e).

Fig. 3
Fig. 3

Two-dimensional structures on substrate. (a) Electric field distribution of TE1 mode in a waveguide shown in the inset. (b) Concept of process flow. Figures (c,e) and (d,f) are top and bird’s-eye views of the dot matrix structure and the fishnet structures, respectively.

Fig. 4
Fig. 4

Three-dimensional structure. (a) Simulated field distribution for TM1 on the condition shown in the inset. (b) AFM image of a fabricated structure. (c) Magnified image inside a red rectangle in (b). Dashed lines are eye-guide drawn on the grooves of first layer. (d) The schematic image of this layered grating structure.

Fig. 5
Fig. 5

Example of a waveguide with trilayer coupler. (a) schematic structure. (b) Simulation results in the case at the resonance angle for TE1. (c) AFM image of fabricated resist structure on multilayer.

Fig. 6
Fig. 6

A metamaterial in the visible region. (a) Design of the structure based on the bilayer dielectric waveguide and the definition of coordinate for this system. Simulation (b) and experimental (c) results of angle resolved absorption spectra for TM polarized light in the metamaterial sample.

Metrics