Abstract

We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Manor, P. Mukherjee, Y. S. Lin, H. Leonov, J. L. Skinner, M. T. Zanni, and I. T. Arkin, “Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies,” Structure 17(2), 247–254 (2009).
    [CrossRef] [PubMed]
  2. A. Remorino and R. M. Hochstrasser, “Three-dimensional structures by two-dimensional vibrational spectroscopy,” Acc. Chem. Res. 45(11), 1896–1905 (2012).
    [CrossRef] [PubMed]
  3. M. D. Fayer, “Water in a crowd,” Physiology 26(6), 381–392 (2011).
    [CrossRef] [PubMed]
  4. A. A. Bakulin, C. Liang, T. la Cour Jansen, D. A. Wiersma, H. J. Bakker, and M. S. Pshenichnikov, “Hydrophobic solvation: a 2D IR spectroscopic inquest,” Acc. Chem. Res. 42(9), 1229–1238 (2009).
    [CrossRef] [PubMed]
  5. D. G. Kuroda, J. D. Bauman, J. R. Challa, D. Patel, T. Troxler, K. Das, E. Arnold, and R. M. Hochstrasser, “Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase,” Nat. Chem. 5(3), 174–181 (2013).
    [CrossRef] [PubMed]
  6. H. S. Chung, M. Khalil, A. W. Smith, Z. Ganim, and A. Tokmakoff, “Conformational changes during the nanosecond-to-millisecond unfolding of ubiquitin,” Proc. Natl. Acad. Sci. U.S.A. 102(3), 612–617 (2005).
    [CrossRef] [PubMed]
  7. M. S. Lynch, K. M. Slenkamp, and M. Khalil, “Communication: Probing non-equilibrium vibrational relaxation pathways of highly excited C≡N stretching modes following ultrafast back-electron transfer,” J. Chem. Phys. 136(24), 241101 (2012).
    [CrossRef] [PubMed]
  8. C. R. Baiz, R. McCanne, and K. J. Kubarych, “Structurally selective geminate rebinding dynamics of solvent-caged radicals studied with nonequilibrium infrared echo spectroscopy,” J. Am. Chem. Soc. 131(38), 13590–13591 (2009).
    [CrossRef] [PubMed]
  9. L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Watching electrons move in real time: ultrafast infrared spectroscopy of a polymer blend photovoltaic material,” J. Am. Chem. Soc. 129(51), 15884–15894 (2007).
    [CrossRef] [PubMed]
  10. H. Chen, X. Wen, J. Li, and J. Zheng, “Molecular distances determined with resonant vibrational energy transfers,” J. Phys. Chem. A 118(13), 2463–2469 (2014).
    [CrossRef] [PubMed]
  11. C. S. Peng, K. C. Jones, and A. Tokmakoff, “Anharmonic vibrational modes of nucleic acid bases revealed by 2D IR spectroscopy,” J. Am. Chem. Soc. 133(39), 15650–15660 (2011).
    [CrossRef] [PubMed]
  12. M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
    [CrossRef] [PubMed]
  13. C. S. Peng, C. R. Baiz, and A. Tokmakoff, “Direct observation of ground-state lactam-lactim tautomerization using temperature-jump transient 2D IR spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9243–9248 (2013).
    [CrossRef] [PubMed]
  14. C. R. Baiz, C. S. Peng, M. E. Reppert, K. C. Jones, and A. Tokmakoff, “Coherent two-dimensional infrared spectroscopy: quantitative analysis of protein secondary structure in solution,” Analyst 137(8), 1793–1799 (2012).
    [CrossRef] [PubMed]
  15. R. Salzer and H. W. Siesler, Infrared and Raman Spectroscopic Imaging (Wiley-VCH, 2009).
  16. D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst 131(8), 875–885 (2006).
    [CrossRef] [PubMed]
  17. M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
    [CrossRef] [PubMed]
  18. A. Remorino, I. V. Korendovych, Y. B. Wu, W. F. DeGrado, and R. M. Hochstrasser, “Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer,” Science 332(6034), 1206–1209 (2011).
    [CrossRef] [PubMed]
  19. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300(5625), 1553–1555 (2003).
    [CrossRef] [PubMed]
  20. W. Wagner, C. Li, J. Semmlow, and W. Warren, “Rapid phase-cycled two-dimensional optical spectroscopy in fluorescence and transmission mode,” Opt. Express 13(10), 3697–3706 (2005).
    [CrossRef] [PubMed]
  21. B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
    [CrossRef] [PubMed]
  22. S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
    [CrossRef] [PubMed]
  23. P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).
  24. G. Cinque, M. D. Frogley, and R. Bartolini, “Far-IR/THz spectral characterization of the coherent synchrotron radiation emission at diamond IR beamline B22,” Rendiconti Lincei 22(1), 33–47 (2011).
    [CrossRef]
  25. C. R. Baiz, P. L. McRobbie, N. K. Preketes, K. J. Kubarych, and E. Geva, “Two-dimensional infrared spectroscopy of dimanganese decacarbonyl and its photoproducts: an ab initio study,” J. Phys. Chem. A 113(35), 9617–9623 (2009).
    [CrossRef] [PubMed]
  26. C. R. Baiz, K. J. Kubarych, E. Geva, and E. L. Sibert, “Local-mode approach to modeling multidimensional infrared spectra of metal carbonyls,” J. Phys. Chem. A 115(21), 5354–5363 (2011).
    [CrossRef] [PubMed]
  27. L. Wei, Y. Yu, Y. H. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
    [CrossRef] [PubMed]
  28. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
    [CrossRef] [PubMed]
  29. J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16(22), 17420–17428 (2008).
    [CrossRef] [PubMed]
  30. A. Zoubir, Raman Imaging: Techniques and Applications (Springer, 2012).
  31. D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
    [CrossRef] [PubMed]
  32. H. Frostig, O. Katz, A. Natan, and Y. Silberberg, “Single-pulse stimulated Raman scattering spectroscopy,” Opt. Lett. 36(7), 1248–1250 (2011).
    [CrossRef] [PubMed]
  33. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006).
    [CrossRef] [PubMed]

2014 (1)

H. Chen, X. Wen, J. Li, and J. Zheng, “Molecular distances determined with resonant vibrational energy transfers,” J. Phys. Chem. A 118(13), 2463–2469 (2014).
[CrossRef] [PubMed]

2013 (4)

D. G. Kuroda, J. D. Bauman, J. R. Challa, D. Patel, T. Troxler, K. Das, E. Arnold, and R. M. Hochstrasser, “Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase,” Nat. Chem. 5(3), 174–181 (2013).
[CrossRef] [PubMed]

C. S. Peng, C. R. Baiz, and A. Tokmakoff, “Direct observation of ground-state lactam-lactim tautomerization using temperature-jump transient 2D IR spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9243–9248 (2013).
[CrossRef] [PubMed]

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

L. Wei, Y. Yu, Y. H. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
[CrossRef] [PubMed]

2012 (4)

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

C. R. Baiz, C. S. Peng, M. E. Reppert, K. C. Jones, and A. Tokmakoff, “Coherent two-dimensional infrared spectroscopy: quantitative analysis of protein secondary structure in solution,” Analyst 137(8), 1793–1799 (2012).
[CrossRef] [PubMed]

A. Remorino and R. M. Hochstrasser, “Three-dimensional structures by two-dimensional vibrational spectroscopy,” Acc. Chem. Res. 45(11), 1896–1905 (2012).
[CrossRef] [PubMed]

M. S. Lynch, K. M. Slenkamp, and M. Khalil, “Communication: Probing non-equilibrium vibrational relaxation pathways of highly excited C≡N stretching modes following ultrafast back-electron transfer,” J. Chem. Phys. 136(24), 241101 (2012).
[CrossRef] [PubMed]

2011 (6)

C. S. Peng, K. C. Jones, and A. Tokmakoff, “Anharmonic vibrational modes of nucleic acid bases revealed by 2D IR spectroscopy,” J. Am. Chem. Soc. 133(39), 15650–15660 (2011).
[CrossRef] [PubMed]

M. D. Fayer, “Water in a crowd,” Physiology 26(6), 381–392 (2011).
[CrossRef] [PubMed]

A. Remorino, I. V. Korendovych, Y. B. Wu, W. F. DeGrado, and R. M. Hochstrasser, “Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer,” Science 332(6034), 1206–1209 (2011).
[CrossRef] [PubMed]

G. Cinque, M. D. Frogley, and R. Bartolini, “Far-IR/THz spectral characterization of the coherent synchrotron radiation emission at diamond IR beamline B22,” Rendiconti Lincei 22(1), 33–47 (2011).
[CrossRef]

C. R. Baiz, K. J. Kubarych, E. Geva, and E. L. Sibert, “Local-mode approach to modeling multidimensional infrared spectra of metal carbonyls,” J. Phys. Chem. A 115(21), 5354–5363 (2011).
[CrossRef] [PubMed]

H. Frostig, O. Katz, A. Natan, and Y. Silberberg, “Single-pulse stimulated Raman scattering spectroscopy,” Opt. Lett. 36(7), 1248–1250 (2011).
[CrossRef] [PubMed]

2010 (1)

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

2009 (5)

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[CrossRef] [PubMed]

C. R. Baiz, P. L. McRobbie, N. K. Preketes, K. J. Kubarych, and E. Geva, “Two-dimensional infrared spectroscopy of dimanganese decacarbonyl and its photoproducts: an ab initio study,” J. Phys. Chem. A 113(35), 9617–9623 (2009).
[CrossRef] [PubMed]

A. A. Bakulin, C. Liang, T. la Cour Jansen, D. A. Wiersma, H. J. Bakker, and M. S. Pshenichnikov, “Hydrophobic solvation: a 2D IR spectroscopic inquest,” Acc. Chem. Res. 42(9), 1229–1238 (2009).
[CrossRef] [PubMed]

C. R. Baiz, R. McCanne, and K. J. Kubarych, “Structurally selective geminate rebinding dynamics of solvent-caged radicals studied with nonequilibrium infrared echo spectroscopy,” J. Am. Chem. Soc. 131(38), 13590–13591 (2009).
[CrossRef] [PubMed]

J. Manor, P. Mukherjee, Y. S. Lin, H. Leonov, J. L. Skinner, M. T. Zanni, and I. T. Arkin, “Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies,” Structure 17(2), 247–254 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Watching electrons move in real time: ultrafast infrared spectroscopy of a polymer blend photovoltaic material,” J. Am. Chem. Soc. 129(51), 15884–15894 (2007).
[CrossRef] [PubMed]

2006 (2)

D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst 131(8), 875–885 (2006).
[CrossRef] [PubMed]

J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006).
[CrossRef] [PubMed]

2005 (2)

W. Wagner, C. Li, J. Semmlow, and W. Warren, “Rapid phase-cycled two-dimensional optical spectroscopy in fluorescence and transmission mode,” Opt. Express 13(10), 3697–3706 (2005).
[CrossRef] [PubMed]

H. S. Chung, M. Khalil, A. W. Smith, Z. Ganim, and A. Tokmakoff, “Conformational changes during the nanosecond-to-millisecond unfolding of ubiquitin,” Proc. Natl. Acad. Sci. U.S.A. 102(3), 612–617 (2005).
[CrossRef] [PubMed]

2003 (1)

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

2000 (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[CrossRef] [PubMed]

Alexandrou, A.

Arkin, I. T.

J. Manor, P. Mukherjee, Y. S. Lin, H. Leonov, J. L. Skinner, M. T. Zanni, and I. T. Arkin, “Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies,” Structure 17(2), 247–254 (2009).
[CrossRef] [PubMed]

Arnold, E.

D. G. Kuroda, J. D. Bauman, J. R. Challa, D. Patel, T. Troxler, K. Das, E. Arnold, and R. M. Hochstrasser, “Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase,” Nat. Chem. 5(3), 174–181 (2013).
[CrossRef] [PubMed]

Asbury, J. B.

L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Watching electrons move in real time: ultrafast infrared spectroscopy of a polymer blend photovoltaic material,” J. Am. Chem. Soc. 129(51), 15884–15894 (2007).
[CrossRef] [PubMed]

Baiz, C. R.

C. S. Peng, C. R. Baiz, and A. Tokmakoff, “Direct observation of ground-state lactam-lactim tautomerization using temperature-jump transient 2D IR spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9243–9248 (2013).
[CrossRef] [PubMed]

C. R. Baiz, C. S. Peng, M. E. Reppert, K. C. Jones, and A. Tokmakoff, “Coherent two-dimensional infrared spectroscopy: quantitative analysis of protein secondary structure in solution,” Analyst 137(8), 1793–1799 (2012).
[CrossRef] [PubMed]

C. R. Baiz, K. J. Kubarych, E. Geva, and E. L. Sibert, “Local-mode approach to modeling multidimensional infrared spectra of metal carbonyls,” J. Phys. Chem. A 115(21), 5354–5363 (2011).
[CrossRef] [PubMed]

C. R. Baiz, P. L. McRobbie, N. K. Preketes, K. J. Kubarych, and E. Geva, “Two-dimensional infrared spectroscopy of dimanganese decacarbonyl and its photoproducts: an ab initio study,” J. Phys. Chem. A 113(35), 9617–9623 (2009).
[CrossRef] [PubMed]

C. R. Baiz, R. McCanne, and K. J. Kubarych, “Structurally selective geminate rebinding dynamics of solvent-caged radicals studied with nonequilibrium infrared echo spectroscopy,” J. Am. Chem. Soc. 131(38), 13590–13591 (2009).
[CrossRef] [PubMed]

Bakker, H. J.

A. A. Bakulin, C. Liang, T. la Cour Jansen, D. A. Wiersma, H. J. Bakker, and M. S. Pshenichnikov, “Hydrophobic solvation: a 2D IR spectroscopic inquest,” Acc. Chem. Res. 42(9), 1229–1238 (2009).
[CrossRef] [PubMed]

Bakulin, A. A.

A. A. Bakulin, C. Liang, T. la Cour Jansen, D. A. Wiersma, H. J. Bakker, and M. S. Pshenichnikov, “Hydrophobic solvation: a 2D IR spectroscopic inquest,” Acc. Chem. Res. 42(9), 1229–1238 (2009).
[CrossRef] [PubMed]

Barbour, L. W.

L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Watching electrons move in real time: ultrafast infrared spectroscopy of a polymer blend photovoltaic material,” J. Am. Chem. Soc. 129(51), 15884–15894 (2007).
[CrossRef] [PubMed]

Bartolini, R.

G. Cinque, M. D. Frogley, and R. Bartolini, “Far-IR/THz spectral characterization of the coherent synchrotron radiation emission at diamond IR beamline B22,” Rendiconti Lincei 22(1), 33–47 (2011).
[CrossRef]

Bauman, J. D.

D. G. Kuroda, J. D. Bauman, J. R. Challa, D. Patel, T. Troxler, K. Das, E. Arnold, and R. M. Hochstrasser, “Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase,” Nat. Chem. 5(3), 174–181 (2013).
[CrossRef] [PubMed]

Beaurepaire, E.

Bechtel, H. A.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

Bhargava, R.

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

Buschke, D.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

Carney, P. S.

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

Castro, J. M.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

Challa, J. R.

D. G. Kuroda, J. D. Bauman, J. R. Challa, D. Patel, T. Troxler, K. Das, E. Arnold, and R. M. Hochstrasser, “Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase,” Nat. Chem. 5(3), 174–181 (2013).
[CrossRef] [PubMed]

Chen, H.

H. Chen, X. Wen, J. Li, and J. Zheng, “Molecular distances determined with resonant vibrational energy transfers,” J. Phys. Chem. A 118(13), 2463–2469 (2014).
[CrossRef] [PubMed]

Cho, M.

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
[CrossRef] [PubMed]

Chung, H. S.

H. S. Chung, M. Khalil, A. W. Smith, Z. Ganim, and A. Tokmakoff, “Conformational changes during the nanosecond-to-millisecond unfolding of ubiquitin,” Proc. Natl. Acad. Sci. U.S.A. 102(3), 612–617 (2005).
[CrossRef] [PubMed]

Cinque, G.

G. Cinque, M. D. Frogley, and R. Bartolini, “Far-IR/THz spectral characterization of the coherent synchrotron radiation emission at diamond IR beamline B22,” Rendiconti Lincei 22(1), 33–47 (2011).
[CrossRef]

Dabat-Blondeau, C.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

Das, K.

D. G. Kuroda, J. D. Bauman, J. R. Challa, D. Patel, T. Troxler, K. Das, E. Arnold, and R. M. Hochstrasser, “Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase,” Nat. Chem. 5(3), 174–181 (2013).
[CrossRef] [PubMed]

Davis, B. J.

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

DeGrado, W. F.

A. Remorino, I. V. Korendovych, Y. B. Wu, W. F. DeGrado, and R. M. Hochstrasser, “Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer,” Science 332(6034), 1206–1209 (2011).
[CrossRef] [PubMed]

Ellis, D. I.

D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst 131(8), 875–885 (2006).
[CrossRef] [PubMed]

Fayer, M. D.

M. D. Fayer, “Water in a crowd,” Physiology 26(6), 381–392 (2011).
[CrossRef] [PubMed]

Freudiger, C.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Frogley, M. D.

G. Cinque, M. D. Frogley, and R. Bartolini, “Far-IR/THz spectral characterization of the coherent synchrotron radiation emission at diamond IR beamline B22,” Rendiconti Lincei 22(1), 33–47 (2011).
[CrossRef]

Frostig, H.

Fu, D.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Ganim, Z.

H. S. Chung, M. Khalil, A. W. Smith, Z. Ganim, and A. Tokmakoff, “Conformational changes during the nanosecond-to-millisecond unfolding of ubiquitin,” Proc. Natl. Acad. Sci. U.S.A. 102(3), 612–617 (2005).
[CrossRef] [PubMed]

Geva, E.

C. R. Baiz, K. J. Kubarych, E. Geva, and E. L. Sibert, “Local-mode approach to modeling multidimensional infrared spectra of metal carbonyls,” J. Phys. Chem. A 115(21), 5354–5363 (2011).
[CrossRef] [PubMed]

C. R. Baiz, P. L. McRobbie, N. K. Preketes, K. J. Kubarych, and E. Geva, “Two-dimensional infrared spectroscopy of dimanganese decacarbonyl and its photoproducts: an ab initio study,” J. Phys. Chem. A 113(35), 9617–9623 (2009).
[CrossRef] [PubMed]

Goodacre, R.

D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst 131(8), 875–885 (2006).
[CrossRef] [PubMed]

Hegadorn, M.

L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Watching electrons move in real time: ultrafast infrared spectroscopy of a polymer blend photovoltaic material,” J. Am. Chem. Soc. 129(51), 15884–15894 (2007).
[CrossRef] [PubMed]

Hirschmugl, C. J.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

Hochstrasser, R. M.

D. G. Kuroda, J. D. Bauman, J. R. Challa, D. Patel, T. Troxler, K. Das, E. Arnold, and R. M. Hochstrasser, “Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase,” Nat. Chem. 5(3), 174–181 (2013).
[CrossRef] [PubMed]

A. Remorino and R. M. Hochstrasser, “Three-dimensional structures by two-dimensional vibrational spectroscopy,” Acc. Chem. Res. 45(11), 1896–1905 (2012).
[CrossRef] [PubMed]

A. Remorino, I. V. Korendovych, Y. B. Wu, W. F. DeGrado, and R. M. Hochstrasser, “Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer,” Science 332(6034), 1206–1209 (2011).
[CrossRef] [PubMed]

Holtom, G.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Illman, B.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

Joffre, M.

Jones, K. C.

C. R. Baiz, C. S. Peng, M. E. Reppert, K. C. Jones, and A. Tokmakoff, “Coherent two-dimensional infrared spectroscopy: quantitative analysis of protein secondary structure in solution,” Analyst 137(8), 1793–1799 (2012).
[CrossRef] [PubMed]

C. S. Peng, K. C. Jones, and A. Tokmakoff, “Anharmonic vibrational modes of nucleic acid bases revealed by 2D IR spectroscopy,” J. Am. Chem. Soc. 133(39), 15650–15660 (2011).
[CrossRef] [PubMed]

Katz, O.

Keiluweit, M.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

Keusters, D.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Khalil, M.

M. S. Lynch, K. M. Slenkamp, and M. Khalil, “Communication: Probing non-equilibrium vibrational relaxation pathways of highly excited C≡N stretching modes following ultrafast back-electron transfer,” J. Chem. Phys. 136(24), 241101 (2012).
[CrossRef] [PubMed]

H. S. Chung, M. Khalil, A. W. Smith, Z. Ganim, and A. Tokmakoff, “Conformational changes during the nanosecond-to-millisecond unfolding of ubiquitin,” Proc. Natl. Acad. Sci. U.S.A. 102(3), 612–617 (2005).
[CrossRef] [PubMed]

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[CrossRef] [PubMed]

Korendovych, I. V.

A. Remorino, I. V. Korendovych, Y. B. Wu, W. F. DeGrado, and R. M. Hochstrasser, “Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer,” Science 332(6034), 1206–1209 (2011).
[CrossRef] [PubMed]

Kubarych, K. J.

C. R. Baiz, K. J. Kubarych, E. Geva, and E. L. Sibert, “Local-mode approach to modeling multidimensional infrared spectra of metal carbonyls,” J. Phys. Chem. A 115(21), 5354–5363 (2011).
[CrossRef] [PubMed]

C. R. Baiz, P. L. McRobbie, N. K. Preketes, K. J. Kubarych, and E. Geva, “Two-dimensional infrared spectroscopy of dimanganese decacarbonyl and its photoproducts: an ab initio study,” J. Phys. Chem. A 113(35), 9617–9623 (2009).
[CrossRef] [PubMed]

C. R. Baiz, R. McCanne, and K. J. Kubarych, “Structurally selective geminate rebinding dynamics of solvent-caged radicals studied with nonequilibrium infrared echo spectroscopy,” J. Am. Chem. Soc. 131(38), 13590–13591 (2009).
[CrossRef] [PubMed]

Kuroda, D. G.

D. G. Kuroda, J. D. Bauman, J. R. Challa, D. Patel, T. Troxler, K. Das, E. Arnold, and R. M. Hochstrasser, “Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase,” Nat. Chem. 5(3), 174–181 (2013).
[CrossRef] [PubMed]

la Cour Jansen, T.

A. A. Bakulin, C. Liang, T. la Cour Jansen, D. A. Wiersma, H. J. Bakker, and M. S. Pshenichnikov, “Hydrophobic solvation: a 2D IR spectroscopic inquest,” Acc. Chem. Res. 42(9), 1229–1238 (2009).
[CrossRef] [PubMed]

Leonov, H.

J. Manor, P. Mukherjee, Y. S. Lin, H. Leonov, J. L. Skinner, M. T. Zanni, and I. T. Arkin, “Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies,” Structure 17(2), 247–254 (2009).
[CrossRef] [PubMed]

Lewis, K. L.

Li, C.

Li, J.

H. Chen, X. Wen, J. Li, and J. Zheng, “Molecular distances determined with resonant vibrational energy transfers,” J. Phys. Chem. A 118(13), 2463–2469 (2014).
[CrossRef] [PubMed]

Liang, C.

A. A. Bakulin, C. Liang, T. la Cour Jansen, D. A. Wiersma, H. J. Bakker, and M. S. Pshenichnikov, “Hydrophobic solvation: a 2D IR spectroscopic inquest,” Acc. Chem. Res. 42(9), 1229–1238 (2009).
[CrossRef] [PubMed]

Lin, Y. S.

J. Manor, P. Mukherjee, Y. S. Lin, H. Leonov, J. L. Skinner, M. T. Zanni, and I. T. Arkin, “Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies,” Structure 17(2), 247–254 (2009).
[CrossRef] [PubMed]

Lu, F. K.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Lynch, M. S.

M. S. Lynch, K. M. Slenkamp, and M. Khalil, “Communication: Probing non-equilibrium vibrational relaxation pathways of highly excited C≡N stretching modes following ultrafast back-electron transfer,” J. Chem. Phys. 136(24), 241101 (2012).
[CrossRef] [PubMed]

Manor, J.

J. Manor, P. Mukherjee, Y. S. Lin, H. Leonov, J. L. Skinner, M. T. Zanni, and I. T. Arkin, “Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies,” Structure 17(2), 247–254 (2009).
[CrossRef] [PubMed]

Martin, M. C.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

McCanne, R.

C. R. Baiz, R. McCanne, and K. J. Kubarych, “Structurally selective geminate rebinding dynamics of solvent-caged radicals studied with nonequilibrium infrared echo spectroscopy,” J. Am. Chem. Soc. 131(38), 13590–13591 (2009).
[CrossRef] [PubMed]

McRobbie, P. L.

C. R. Baiz, P. L. McRobbie, N. K. Preketes, K. J. Kubarych, and E. Geva, “Two-dimensional infrared spectroscopy of dimanganese decacarbonyl and its photoproducts: an ab initio study,” J. Phys. Chem. A 113(35), 9617–9623 (2009).
[CrossRef] [PubMed]

Min, W.

L. Wei, Y. Yu, Y. H. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
[CrossRef] [PubMed]

Mukherjee, P.

J. Manor, P. Mukherjee, Y. S. Lin, H. Leonov, J. L. Skinner, M. T. Zanni, and I. T. Arkin, “Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies,” Structure 17(2), 247–254 (2009).
[CrossRef] [PubMed]

Myers, J. A.

Nasse, M. J.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

Natan, A.

Ogilvie, J. P.

Ogle, B.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

Parkinson, D. Y.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

Patel, D.

D. G. Kuroda, J. D. Bauman, J. R. Challa, D. Patel, T. Troxler, K. Das, E. Arnold, and R. M. Hochstrasser, “Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase,” Nat. Chem. 5(3), 174–181 (2013).
[CrossRef] [PubMed]

Peng, C. S.

C. S. Peng, C. R. Baiz, and A. Tokmakoff, “Direct observation of ground-state lactam-lactim tautomerization using temperature-jump transient 2D IR spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9243–9248 (2013).
[CrossRef] [PubMed]

C. R. Baiz, C. S. Peng, M. E. Reppert, K. C. Jones, and A. Tokmakoff, “Coherent two-dimensional infrared spectroscopy: quantitative analysis of protein secondary structure in solution,” Analyst 137(8), 1793–1799 (2012).
[CrossRef] [PubMed]

C. S. Peng, K. C. Jones, and A. Tokmakoff, “Anharmonic vibrational modes of nucleic acid bases revealed by 2D IR spectroscopy,” J. Am. Chem. Soc. 133(39), 15650–15660 (2011).
[CrossRef] [PubMed]

Pernik, D. R.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Preketes, N. K.

C. R. Baiz, P. L. McRobbie, N. K. Preketes, K. J. Kubarych, and E. Geva, “Two-dimensional infrared spectroscopy of dimanganese decacarbonyl and its photoproducts: an ab initio study,” J. Phys. Chem. A 113(35), 9617–9623 (2009).
[CrossRef] [PubMed]

Pshenichnikov, M. S.

A. A. Bakulin, C. Liang, T. la Cour Jansen, D. A. Wiersma, H. J. Bakker, and M. S. Pshenichnikov, “Hydrophobic solvation: a 2D IR spectroscopic inquest,” Acc. Chem. Res. 42(9), 1229–1238 (2009).
[CrossRef] [PubMed]

Remorino, A.

A. Remorino and R. M. Hochstrasser, “Three-dimensional structures by two-dimensional vibrational spectroscopy,” Acc. Chem. Res. 45(11), 1896–1905 (2012).
[CrossRef] [PubMed]

A. Remorino, I. V. Korendovych, Y. B. Wu, W. F. DeGrado, and R. M. Hochstrasser, “Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer,” Science 332(6034), 1206–1209 (2011).
[CrossRef] [PubMed]

Reppert, M. E.

C. R. Baiz, C. S. Peng, M. E. Reppert, K. C. Jones, and A. Tokmakoff, “Coherent two-dimensional infrared spectroscopy: quantitative analysis of protein secondary structure in solution,” Analyst 137(8), 1793–1799 (2012).
[CrossRef] [PubMed]

Sedlmair, J.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

Semmlow, J.

Shen, Y. H.

L. Wei, Y. Yu, Y. H. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
[CrossRef] [PubMed]

Shim, S. H.

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[CrossRef] [PubMed]

Sibert, E. L.

C. R. Baiz, K. J. Kubarych, E. Geva, and E. L. Sibert, “Local-mode approach to modeling multidimensional infrared spectra of metal carbonyls,” J. Phys. Chem. A 115(21), 5354–5363 (2011).
[CrossRef] [PubMed]

Silberberg, Y.

Skinner, J. L.

J. Manor, P. Mukherjee, Y. S. Lin, H. Leonov, J. L. Skinner, M. T. Zanni, and I. T. Arkin, “Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies,” Structure 17(2), 247–254 (2009).
[CrossRef] [PubMed]

Slenkamp, K. M.

M. S. Lynch, K. M. Slenkamp, and M. Khalil, “Communication: Probing non-equilibrium vibrational relaxation pathways of highly excited C≡N stretching modes following ultrafast back-electron transfer,” J. Chem. Phys. 136(24), 241101 (2012).
[CrossRef] [PubMed]

Smith, A. W.

H. S. Chung, M. Khalil, A. W. Smith, Z. Ganim, and A. Tokmakoff, “Conformational changes during the nanosecond-to-millisecond unfolding of ubiquitin,” Proc. Natl. Acad. Sci. U.S.A. 102(3), 612–617 (2005).
[CrossRef] [PubMed]

Suzaki, Y.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Tekavec, P. F.

Tian, P.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Tokmakoff, A.

C. S. Peng, C. R. Baiz, and A. Tokmakoff, “Direct observation of ground-state lactam-lactim tautomerization using temperature-jump transient 2D IR spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9243–9248 (2013).
[CrossRef] [PubMed]

C. R. Baiz, C. S. Peng, M. E. Reppert, K. C. Jones, and A. Tokmakoff, “Coherent two-dimensional infrared spectroscopy: quantitative analysis of protein secondary structure in solution,” Analyst 137(8), 1793–1799 (2012).
[CrossRef] [PubMed]

C. S. Peng, K. C. Jones, and A. Tokmakoff, “Anharmonic vibrational modes of nucleic acid bases revealed by 2D IR spectroscopy,” J. Am. Chem. Soc. 133(39), 15650–15660 (2011).
[CrossRef] [PubMed]

H. S. Chung, M. Khalil, A. W. Smith, Z. Ganim, and A. Tokmakoff, “Conformational changes during the nanosecond-to-millisecond unfolding of ubiquitin,” Proc. Natl. Acad. Sci. U.S.A. 102(3), 612–617 (2005).
[CrossRef] [PubMed]

Troxler, T.

D. G. Kuroda, J. D. Bauman, J. R. Challa, D. Patel, T. Troxler, K. Das, E. Arnold, and R. M. Hochstrasser, “Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase,” Nat. Chem. 5(3), 174–181 (2013).
[CrossRef] [PubMed]

Unger, M.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

Wagner, W.

Wang, M. C.

L. Wei, Y. Yu, Y. H. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
[CrossRef] [PubMed]

Warren, W.

Warren, W. S.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Wei, L.

L. Wei, Y. Yu, Y. H. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
[CrossRef] [PubMed]

Wen, X.

H. Chen, X. Wen, J. Li, and J. Zheng, “Molecular distances determined with resonant vibrational energy transfers,” J. Phys. Chem. A 118(13), 2463–2469 (2014).
[CrossRef] [PubMed]

Wiersma, D. A.

A. A. Bakulin, C. Liang, T. la Cour Jansen, D. A. Wiersma, H. J. Bakker, and M. S. Pshenichnikov, “Hydrophobic solvation: a 2D IR spectroscopic inquest,” Acc. Chem. Res. 42(9), 1229–1238 (2009).
[CrossRef] [PubMed]

Wu, Y. B.

A. Remorino, I. V. Korendovych, Y. B. Wu, W. F. DeGrado, and R. M. Hochstrasser, “Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer,” Science 332(6034), 1206–1209 (2011).
[CrossRef] [PubMed]

Xie, X. S.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Yu, Y.

L. Wei, Y. Yu, Y. H. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
[CrossRef] [PubMed]

Zanni, M. T.

J. Manor, P. Mukherjee, Y. S. Lin, H. Leonov, J. L. Skinner, M. T. Zanni, and I. T. Arkin, “Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies,” Structure 17(2), 247–254 (2009).
[CrossRef] [PubMed]

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[CrossRef] [PubMed]

Zhang, X.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Zheng, J.

H. Chen, X. Wen, J. Li, and J. Zheng, “Molecular distances determined with resonant vibrational energy transfers,” J. Phys. Chem. A 118(13), 2463–2469 (2014).
[CrossRef] [PubMed]

Acc. Chem. Res. (2)

A. Remorino and R. M. Hochstrasser, “Three-dimensional structures by two-dimensional vibrational spectroscopy,” Acc. Chem. Res. 45(11), 1896–1905 (2012).
[CrossRef] [PubMed]

A. A. Bakulin, C. Liang, T. la Cour Jansen, D. A. Wiersma, H. J. Bakker, and M. S. Pshenichnikov, “Hydrophobic solvation: a 2D IR spectroscopic inquest,” Acc. Chem. Res. 42(9), 1229–1238 (2009).
[CrossRef] [PubMed]

Anal. Chem. (1)

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

Analyst (2)

C. R. Baiz, C. S. Peng, M. E. Reppert, K. C. Jones, and A. Tokmakoff, “Coherent two-dimensional infrared spectroscopy: quantitative analysis of protein secondary structure in solution,” Analyst 137(8), 1793–1799 (2012).
[CrossRef] [PubMed]

D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst 131(8), 875–885 (2006).
[CrossRef] [PubMed]

Chem. Rev. (1)

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (4)

C. R. Baiz, R. McCanne, and K. J. Kubarych, “Structurally selective geminate rebinding dynamics of solvent-caged radicals studied with nonequilibrium infrared echo spectroscopy,” J. Am. Chem. Soc. 131(38), 13590–13591 (2009).
[CrossRef] [PubMed]

L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Watching electrons move in real time: ultrafast infrared spectroscopy of a polymer blend photovoltaic material,” J. Am. Chem. Soc. 129(51), 15884–15894 (2007).
[CrossRef] [PubMed]

C. S. Peng, K. C. Jones, and A. Tokmakoff, “Anharmonic vibrational modes of nucleic acid bases revealed by 2D IR spectroscopy,” J. Am. Chem. Soc. 133(39), 15650–15660 (2011).
[CrossRef] [PubMed]

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

M. S. Lynch, K. M. Slenkamp, and M. Khalil, “Communication: Probing non-equilibrium vibrational relaxation pathways of highly excited C≡N stretching modes following ultrafast back-electron transfer,” J. Chem. Phys. 136(24), 241101 (2012).
[CrossRef] [PubMed]

J. Microsc. (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[CrossRef] [PubMed]

J. Phys. Chem. A (3)

C. R. Baiz, P. L. McRobbie, N. K. Preketes, K. J. Kubarych, and E. Geva, “Two-dimensional infrared spectroscopy of dimanganese decacarbonyl and its photoproducts: an ab initio study,” J. Phys. Chem. A 113(35), 9617–9623 (2009).
[CrossRef] [PubMed]

C. R. Baiz, K. J. Kubarych, E. Geva, and E. L. Sibert, “Local-mode approach to modeling multidimensional infrared spectra of metal carbonyls,” J. Phys. Chem. A 115(21), 5354–5363 (2011).
[CrossRef] [PubMed]

H. Chen, X. Wen, J. Li, and J. Zheng, “Molecular distances determined with resonant vibrational energy transfers,” J. Phys. Chem. A 118(13), 2463–2469 (2014).
[CrossRef] [PubMed]

Nat. Chem. (1)

D. G. Kuroda, J. D. Bauman, J. R. Challa, D. Patel, T. Troxler, K. Das, E. Arnold, and R. M. Hochstrasser, “Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase,” Nat. Chem. 5(3), 174–181 (2013).
[CrossRef] [PubMed]

Nat. Methods (1)

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, and C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10(9), 861–864 (2013).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[CrossRef] [PubMed]

Physiology (1)

M. D. Fayer, “Water in a crowd,” Physiology 26(6), 381–392 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

H. S. Chung, M. Khalil, A. W. Smith, Z. Ganim, and A. Tokmakoff, “Conformational changes during the nanosecond-to-millisecond unfolding of ubiquitin,” Proc. Natl. Acad. Sci. U.S.A. 102(3), 612–617 (2005).
[CrossRef] [PubMed]

C. S. Peng, C. R. Baiz, and A. Tokmakoff, “Direct observation of ground-state lactam-lactim tautomerization using temperature-jump transient 2D IR spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9243–9248 (2013).
[CrossRef] [PubMed]

L. Wei, Y. Yu, Y. H. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(28), 11226–11231 (2013).
[CrossRef] [PubMed]

Rendiconti Lincei (1)

G. Cinque, M. D. Frogley, and R. Bartolini, “Far-IR/THz spectral characterization of the coherent synchrotron radiation emission at diamond IR beamline B22,” Rendiconti Lincei 22(1), 33–47 (2011).
[CrossRef]

Science (2)

A. Remorino, I. V. Korendovych, Y. B. Wu, W. F. DeGrado, and R. M. Hochstrasser, “Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer,” Science 332(6034), 1206–1209 (2011).
[CrossRef] [PubMed]

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Structure (1)

J. Manor, P. Mukherjee, Y. S. Lin, H. Leonov, J. L. Skinner, M. T. Zanni, and I. T. Arkin, “Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies,” Structure 17(2), 247–254 (2009).
[CrossRef] [PubMed]

Other (3)

R. Salzer and H. W. Siesler, Infrared and Raman Spectroscopic Imaging (Wiley-VCH, 2009).

P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).

A. Zoubir, Raman Imaging: Techniques and Applications (Springer, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical geometries used for 2D IR spectroscopy. (a) Boxcars geometry, where all three incoming pulses and the signal propagate in different directions. (b) Pump–probe geometry, the two pumps (E1 and E2) travel collinearly with each other but not with the probe (E3). In both geometries the signal is isolated by a spatial mask. (c) Collinear geometry used for IR microscopy. In this case the pump pulses are blocked by a wire-grid polarizer.

Fig. 2
Fig. 2

Optical layout of the ultrafast mid-IR microscopy setup. The pulses are generated by an OPA-DFG setup (not shown), part of the light is split by a wedged beamsplitter (WBS) and travels along the variable-delay probe (E3) path. The pulse shaper generates the pump pulses (E1 and E2), which are combined with a probe at a wire-grid polarizer (Pol) and routed into the microscope. The microscope can be automatically configured to record spectra in transmission or reflection modes. At the output of the microscope a motorized mirror switches between a single channel MCT detector for FTIR measurements and a grating-based spectrometer equipped with an MCT array for 2D IR spectroscopy.

Fig. 3
Fig. 3

Microscope point spread function (PSF) at the focus plane in transmission mode. (a) PSF of well-collimated IR output from the OPA/DFG setup used for 2D IR. (b) PSF measured internal thermal source from FTIR. The plots were obtained by scanning a 5- and 25-µm pinhole in the focus plane, respectively. Note the different plot scales; contours from (a) are also included in (b) for comparison.

Fig. 4
Fig. 4

(right) 2D IR chemical map of a 100-µm-diameter polystyrene bead with Mn2(CO)10. The color bar represents the integrated intensity of the diagonal 2008 cm−1 peak in the 2D IR spectrum as indicated by a box in the right plot. The points are overlaid onto a brightfield visible image of the bead. (left) Absorptive 2D IR spectrum of Mn2(CO)10 collected at the position indicated in the image. A total data acquisition time of 100 seconds is required for each 2D IR spectrum, corresponding to each point in the image map to the left. The total data acquisition time for the complete map is 6 hours and 15 minutes.

Fig. 5
Fig. 5

(left) Pump–probe signal intensity plot as a function of delay between pump and probe for Mn2(CO)10 in a polystyrene bead (red) and methanol (blue). The solid curves represent single-exponential fits to the data. (right) Vibrational lifetime map of Mn2(CO)10 in a polystyrene bead and surrounding methanol solvent. The color bar represents the pump–probe amplitude of the 2008 cm−1 peak at 100 ps following excitation.

Fig. 6
Fig. 6

2D IR spectrum of Mn2(CO)10 in squalane solution collected in transflection mode in the IR microscope using the fully collinear beam geometry.

Tables (2)

Tables Icon

Table 1 Phase-cycling scheme used for removing unwanted field interferences and isolating the nonlinear signals of interest.

Tables Icon

Table 2 Wavevector matched third-order nonlinear signals observed in the collinear geometry.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E j (t)= ε j (t) e i k j r i ω j t+ ϕ j ,
E 2DIR ( t 1 , t 2 , t 3 ) R (R) ( t 1 , t 2 , t 3 ) e i( k 1 + k 2 + k 3 ) r e i( ϕ 1 + ϕ 2 + ϕ 3 ) + R (NR) ( t 1 , t 2 , t 3 ) e i(+ k 1 k 2 + k 3 ) r e i(+ ϕ 1 ϕ 2 + ϕ 3 )
S 2DIR ( ϕ 1 , ϕ 2 , ϕ 3 , ϕ LO )=Re[ E 2DIR E LO * ] Re( R (R) e i( ϕ 1 + ϕ 2 + ϕ 3 ϕ LO ) + R (NR) e i(+ ϕ 1 ϕ 2 + ϕ 3 ϕ LO ) )
S TOT | E 1 + E 2 + E 3 + E other + E 2DIR | 2

Metrics