Abstract

We report the successful synthesis of ZnO porous nano-cages with controllable hollow spaces by simply using laser ablation of Zn target in liquid medium containing deionized water and ammonia (Vwater:Vammonia = 7:1~5:1). In addition to the porous surface, the created interior space of the ZnO nano-cage substantially increases with the ammonia concentration. The related growth mechanism has been illustrated based on the ultra-rapid alkaline etching process. Moreover, numerous Zn(NH3)42+ clusters generated by the selective etching route readily penetrate into the ZnO porous structures and can be embedded in these unique nano-cages. It is envisaged that these composite ions/ ZnO porous nano-cages have significant implications for gas sensing and catalytic applications. The synthetic scheme used here should also be applicable to other semiconductors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. W. Lou, L. A. Archer, and Z. Yang, “Hollow micro-/nanostructures: synthesis and applications,” Adv. Mater. 20(21), 3987–4019 (2008).
    [CrossRef]
  2. H. B. Zeng, Z. G. Li, W. P. Cai, B. Q. Cao, P. S. Liu, and S. K. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
    [CrossRef] [PubMed]
  3. A. Tamang, M. Pathirane, R. Parsons, M. M. Schwarz, B. Iheanacho, V. Jovanov, V. Wagner, W. S. Wong, and D. Knipp, “Zinc oxide nanowire arrays for silicon core/shell solar cells,” Opt. Express 22(S3), A622–A632 (2014).
    [CrossRef] [PubMed]
  4. Z. J. Yan, R. Q. Bao, and D. B. Chrisey, “Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid,” Chem. Phys. Lett. 497(4–6), 205–207 (2010).
    [CrossRef]
  5. H. J. Fan, U. Gösele, and M. Zacharias, “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review,” Small 3(10), 1660–1671 (2007).
    [CrossRef] [PubMed]
  6. A. Umar and Y. B. Hahn, “Large-quantity synthesis of ZnO hollow objects by thermal evaporation: Growth mechanism, structural and optical properties,” Appl. Surf. Sci. 254(11), 3339–3346 (2008).
    [CrossRef]
  7. H. B. Zeng, P. S. Liu, W. P. Cai, S. K. Yang, and X. X. Xu, “Controllable Pt/ZnO porous nanocages with improved photocatalytic activity,” J. Phys. Chem. C 112(49), 19620–19624 (2008).
    [CrossRef]
  8. K. Matsuyama, K. Mishima, T. Kato, and K. Ohara, “Preparation of hollow ZnO microspheres using poly(methyl methacrylate) as a template with supercritical CO2-ethanol solution,” Ind. Eng. Chem. Res. 49(18), 8510–8517 (2010).
    [CrossRef]
  9. Z. J. Yan, R. Q. Bao, C. M. Busta, and D. B. Chrisey, “Fabrication and formation mechanism of hollow MgO particles by pulsed excimer laser ablation of Mg in liquid,” Nanotechnology 22(26), 265610 (2011).
    [CrossRef] [PubMed]
  10. M. Chen, X. D. Liu, Y. H. Liu, and M. W. Zhao, “Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets,” J. Appl. Phys. 111(10), 103108 (2012).
    [CrossRef]
  11. Z. J. Yan, R. Q. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114(26), 11370–11374 (2010).
    [CrossRef]
  12. Z. J. Yan, R. Q. Bao, and D. B. Chrisey, “Excimer laser ablation of a Pt target in water: the observation of hollow particles,” Nanotechnology 21(14), 145609 (2010).
    [CrossRef] [PubMed]
  13. Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
    [CrossRef]
  14. O. Altuntasoglu, Y. Matsuda, S. Ida, and Y. Matsumoto, “Syntheses of zinc oxide and zinc hydroxide single nanosheets,” Chem. Mater. 22(10), 3158–3164 (2010).
    [CrossRef]
  15. J. Mellqvist, H. Axelsson, and A. Rosen, “Doas for flue gas monitoring-III. In-Situ monitoring of sulfur dioxide, nitrogen monoxide and ammonia,” J. Quant. Spectrosc. Radiat. Transf. 56(2), 225–240 (1996).
    [CrossRef]
  16. J. Mellqvist and A. Rosen, “Doas for flue gas monitoring-II. deviations from the beer-lamert law for the U.V/Visble absorption spectra of NO,NO2, SO2 and NH3,” J. Quant. Spectrosc. Radiat. Transf. 56(2), 209–224 (1996).
    [CrossRef]
  17. C. Katepetch, R. Rujiravanit, and H. Tamura, “Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis,” Cellulose 20(3), 1275–1292 (2013).
    [CrossRef]
  18. W. Wu, L. Shi, Q. Zhu, Y. Wang, G. Xu, and W. Pang, “Rapid synthesis of ZnO micro/nanostructures in large scale,” Mater. Lett. 62(1), 159–162 (2008).
    [CrossRef]

2014 (1)

2013 (1)

C. Katepetch, R. Rujiravanit, and H. Tamura, “Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis,” Cellulose 20(3), 1275–1292 (2013).
[CrossRef]

2012 (1)

M. Chen, X. D. Liu, Y. H. Liu, and M. W. Zhao, “Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets,” J. Appl. Phys. 111(10), 103108 (2012).
[CrossRef]

2011 (1)

Z. J. Yan, R. Q. Bao, C. M. Busta, and D. B. Chrisey, “Fabrication and formation mechanism of hollow MgO particles by pulsed excimer laser ablation of Mg in liquid,” Nanotechnology 22(26), 265610 (2011).
[CrossRef] [PubMed]

2010 (6)

K. Matsuyama, K. Mishima, T. Kato, and K. Ohara, “Preparation of hollow ZnO microspheres using poly(methyl methacrylate) as a template with supercritical CO2-ethanol solution,” Ind. Eng. Chem. Res. 49(18), 8510–8517 (2010).
[CrossRef]

Z. J. Yan, R. Q. Bao, and D. B. Chrisey, “Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid,” Chem. Phys. Lett. 497(4–6), 205–207 (2010).
[CrossRef]

Z. J. Yan, R. Q. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114(26), 11370–11374 (2010).
[CrossRef]

Z. J. Yan, R. Q. Bao, and D. B. Chrisey, “Excimer laser ablation of a Pt target in water: the observation of hollow particles,” Nanotechnology 21(14), 145609 (2010).
[CrossRef] [PubMed]

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[CrossRef]

O. Altuntasoglu, Y. Matsuda, S. Ida, and Y. Matsumoto, “Syntheses of zinc oxide and zinc hydroxide single nanosheets,” Chem. Mater. 22(10), 3158–3164 (2010).
[CrossRef]

2008 (4)

W. Wu, L. Shi, Q. Zhu, Y. Wang, G. Xu, and W. Pang, “Rapid synthesis of ZnO micro/nanostructures in large scale,” Mater. Lett. 62(1), 159–162 (2008).
[CrossRef]

X. W. Lou, L. A. Archer, and Z. Yang, “Hollow micro-/nanostructures: synthesis and applications,” Adv. Mater. 20(21), 3987–4019 (2008).
[CrossRef]

A. Umar and Y. B. Hahn, “Large-quantity synthesis of ZnO hollow objects by thermal evaporation: Growth mechanism, structural and optical properties,” Appl. Surf. Sci. 254(11), 3339–3346 (2008).
[CrossRef]

H. B. Zeng, P. S. Liu, W. P. Cai, S. K. Yang, and X. X. Xu, “Controllable Pt/ZnO porous nanocages with improved photocatalytic activity,” J. Phys. Chem. C 112(49), 19620–19624 (2008).
[CrossRef]

2007 (2)

H. B. Zeng, Z. G. Li, W. P. Cai, B. Q. Cao, P. S. Liu, and S. K. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[CrossRef] [PubMed]

H. J. Fan, U. Gösele, and M. Zacharias, “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review,” Small 3(10), 1660–1671 (2007).
[CrossRef] [PubMed]

1996 (2)

J. Mellqvist, H. Axelsson, and A. Rosen, “Doas for flue gas monitoring-III. In-Situ monitoring of sulfur dioxide, nitrogen monoxide and ammonia,” J. Quant. Spectrosc. Radiat. Transf. 56(2), 225–240 (1996).
[CrossRef]

J. Mellqvist and A. Rosen, “Doas for flue gas monitoring-II. deviations from the beer-lamert law for the U.V/Visble absorption spectra of NO,NO2, SO2 and NH3,” J. Quant. Spectrosc. Radiat. Transf. 56(2), 209–224 (1996).
[CrossRef]

Altuntasoglu, O.

O. Altuntasoglu, Y. Matsuda, S. Ida, and Y. Matsumoto, “Syntheses of zinc oxide and zinc hydroxide single nanosheets,” Chem. Mater. 22(10), 3158–3164 (2010).
[CrossRef]

Archer, L. A.

X. W. Lou, L. A. Archer, and Z. Yang, “Hollow micro-/nanostructures: synthesis and applications,” Adv. Mater. 20(21), 3987–4019 (2008).
[CrossRef]

Axelsson, H.

J. Mellqvist, H. Axelsson, and A. Rosen, “Doas for flue gas monitoring-III. In-Situ monitoring of sulfur dioxide, nitrogen monoxide and ammonia,” J. Quant. Spectrosc. Radiat. Transf. 56(2), 225–240 (1996).
[CrossRef]

Bao, R. Q.

Z. J. Yan, R. Q. Bao, C. M. Busta, and D. B. Chrisey, “Fabrication and formation mechanism of hollow MgO particles by pulsed excimer laser ablation of Mg in liquid,” Nanotechnology 22(26), 265610 (2011).
[CrossRef] [PubMed]

Z. J. Yan, R. Q. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114(26), 11370–11374 (2010).
[CrossRef]

Z. J. Yan, R. Q. Bao, and D. B. Chrisey, “Excimer laser ablation of a Pt target in water: the observation of hollow particles,” Nanotechnology 21(14), 145609 (2010).
[CrossRef] [PubMed]

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[CrossRef]

Z. J. Yan, R. Q. Bao, and D. B. Chrisey, “Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid,” Chem. Phys. Lett. 497(4–6), 205–207 (2010).
[CrossRef]

Busta, C. M.

Z. J. Yan, R. Q. Bao, C. M. Busta, and D. B. Chrisey, “Fabrication and formation mechanism of hollow MgO particles by pulsed excimer laser ablation of Mg in liquid,” Nanotechnology 22(26), 265610 (2011).
[CrossRef] [PubMed]

Cai, W. P.

H. B. Zeng, P. S. Liu, W. P. Cai, S. K. Yang, and X. X. Xu, “Controllable Pt/ZnO porous nanocages with improved photocatalytic activity,” J. Phys. Chem. C 112(49), 19620–19624 (2008).
[CrossRef]

H. B. Zeng, Z. G. Li, W. P. Cai, B. Q. Cao, P. S. Liu, and S. K. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[CrossRef] [PubMed]

Cao, B. Q.

H. B. Zeng, Z. G. Li, W. P. Cai, B. Q. Cao, P. S. Liu, and S. K. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[CrossRef] [PubMed]

Caruso, A. N.

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[CrossRef]

Chen, M.

M. Chen, X. D. Liu, Y. H. Liu, and M. W. Zhao, “Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets,” J. Appl. Phys. 111(10), 103108 (2012).
[CrossRef]

Chrisey, D. B.

Z. J. Yan, R. Q. Bao, C. M. Busta, and D. B. Chrisey, “Fabrication and formation mechanism of hollow MgO particles by pulsed excimer laser ablation of Mg in liquid,” Nanotechnology 22(26), 265610 (2011).
[CrossRef] [PubMed]

Z. J. Yan, R. Q. Bao, and D. B. Chrisey, “Excimer laser ablation of a Pt target in water: the observation of hollow particles,” Nanotechnology 21(14), 145609 (2010).
[CrossRef] [PubMed]

Z. J. Yan, R. Q. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114(26), 11370–11374 (2010).
[CrossRef]

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[CrossRef]

Z. J. Yan, R. Q. Bao, and D. B. Chrisey, “Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid,” Chem. Phys. Lett. 497(4–6), 205–207 (2010).
[CrossRef]

Dinu, C. Z.

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[CrossRef]

Fan, H. J.

H. J. Fan, U. Gösele, and M. Zacharias, “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review,” Small 3(10), 1660–1671 (2007).
[CrossRef] [PubMed]

Gösele, U.

H. J. Fan, U. Gösele, and M. Zacharias, “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review,” Small 3(10), 1660–1671 (2007).
[CrossRef] [PubMed]

Hahn, Y. B.

A. Umar and Y. B. Hahn, “Large-quantity synthesis of ZnO hollow objects by thermal evaporation: Growth mechanism, structural and optical properties,” Appl. Surf. Sci. 254(11), 3339–3346 (2008).
[CrossRef]

Huang, Y.

Z. J. Yan, R. Q. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114(26), 11370–11374 (2010).
[CrossRef]

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[CrossRef]

Ida, S.

O. Altuntasoglu, Y. Matsuda, S. Ida, and Y. Matsumoto, “Syntheses of zinc oxide and zinc hydroxide single nanosheets,” Chem. Mater. 22(10), 3158–3164 (2010).
[CrossRef]

Iheanacho, B.

Jovanov, V.

Katepetch, C.

C. Katepetch, R. Rujiravanit, and H. Tamura, “Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis,” Cellulose 20(3), 1275–1292 (2013).
[CrossRef]

Kato, T.

K. Matsuyama, K. Mishima, T. Kato, and K. Ohara, “Preparation of hollow ZnO microspheres using poly(methyl methacrylate) as a template with supercritical CO2-ethanol solution,” Ind. Eng. Chem. Res. 49(18), 8510–8517 (2010).
[CrossRef]

Knipp, D.

Li, Z. G.

H. B. Zeng, Z. G. Li, W. P. Cai, B. Q. Cao, P. S. Liu, and S. K. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[CrossRef] [PubMed]

Liu, P. S.

H. B. Zeng, P. S. Liu, W. P. Cai, S. K. Yang, and X. X. Xu, “Controllable Pt/ZnO porous nanocages with improved photocatalytic activity,” J. Phys. Chem. C 112(49), 19620–19624 (2008).
[CrossRef]

H. B. Zeng, Z. G. Li, W. P. Cai, B. Q. Cao, P. S. Liu, and S. K. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[CrossRef] [PubMed]

Liu, X. D.

M. Chen, X. D. Liu, Y. H. Liu, and M. W. Zhao, “Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets,” J. Appl. Phys. 111(10), 103108 (2012).
[CrossRef]

Liu, Y. H.

M. Chen, X. D. Liu, Y. H. Liu, and M. W. Zhao, “Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets,” J. Appl. Phys. 111(10), 103108 (2012).
[CrossRef]

Lou, X. W.

X. W. Lou, L. A. Archer, and Z. Yang, “Hollow micro-/nanostructures: synthesis and applications,” Adv. Mater. 20(21), 3987–4019 (2008).
[CrossRef]

Matsuda, Y.

O. Altuntasoglu, Y. Matsuda, S. Ida, and Y. Matsumoto, “Syntheses of zinc oxide and zinc hydroxide single nanosheets,” Chem. Mater. 22(10), 3158–3164 (2010).
[CrossRef]

Matsumoto, Y.

O. Altuntasoglu, Y. Matsuda, S. Ida, and Y. Matsumoto, “Syntheses of zinc oxide and zinc hydroxide single nanosheets,” Chem. Mater. 22(10), 3158–3164 (2010).
[CrossRef]

Matsuyama, K.

K. Matsuyama, K. Mishima, T. Kato, and K. Ohara, “Preparation of hollow ZnO microspheres using poly(methyl methacrylate) as a template with supercritical CO2-ethanol solution,” Ind. Eng. Chem. Res. 49(18), 8510–8517 (2010).
[CrossRef]

Mellqvist, J.

J. Mellqvist, H. Axelsson, and A. Rosen, “Doas for flue gas monitoring-III. In-Situ monitoring of sulfur dioxide, nitrogen monoxide and ammonia,” J. Quant. Spectrosc. Radiat. Transf. 56(2), 225–240 (1996).
[CrossRef]

J. Mellqvist and A. Rosen, “Doas for flue gas monitoring-II. deviations from the beer-lamert law for the U.V/Visble absorption spectra of NO,NO2, SO2 and NH3,” J. Quant. Spectrosc. Radiat. Transf. 56(2), 209–224 (1996).
[CrossRef]

Mishima, K.

K. Matsuyama, K. Mishima, T. Kato, and K. Ohara, “Preparation of hollow ZnO microspheres using poly(methyl methacrylate) as a template with supercritical CO2-ethanol solution,” Ind. Eng. Chem. Res. 49(18), 8510–8517 (2010).
[CrossRef]

Ohara, K.

K. Matsuyama, K. Mishima, T. Kato, and K. Ohara, “Preparation of hollow ZnO microspheres using poly(methyl methacrylate) as a template with supercritical CO2-ethanol solution,” Ind. Eng. Chem. Res. 49(18), 8510–8517 (2010).
[CrossRef]

Pang, W.

W. Wu, L. Shi, Q. Zhu, Y. Wang, G. Xu, and W. Pang, “Rapid synthesis of ZnO micro/nanostructures in large scale,” Mater. Lett. 62(1), 159–162 (2008).
[CrossRef]

Parsons, R.

Pathirane, M.

Qadri, S. B.

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[CrossRef]

Rosen, A.

J. Mellqvist and A. Rosen, “Doas for flue gas monitoring-II. deviations from the beer-lamert law for the U.V/Visble absorption spectra of NO,NO2, SO2 and NH3,” J. Quant. Spectrosc. Radiat. Transf. 56(2), 209–224 (1996).
[CrossRef]

J. Mellqvist, H. Axelsson, and A. Rosen, “Doas for flue gas monitoring-III. In-Situ monitoring of sulfur dioxide, nitrogen monoxide and ammonia,” J. Quant. Spectrosc. Radiat. Transf. 56(2), 225–240 (1996).
[CrossRef]

Rujiravanit, R.

C. Katepetch, R. Rujiravanit, and H. Tamura, “Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis,” Cellulose 20(3), 1275–1292 (2013).
[CrossRef]

Schwarz, M. M.

Shi, L.

W. Wu, L. Shi, Q. Zhu, Y. Wang, G. Xu, and W. Pang, “Rapid synthesis of ZnO micro/nanostructures in large scale,” Mater. Lett. 62(1), 159–162 (2008).
[CrossRef]

Tamang, A.

Tamura, H.

C. Katepetch, R. Rujiravanit, and H. Tamura, “Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis,” Cellulose 20(3), 1275–1292 (2013).
[CrossRef]

Umar, A.

A. Umar and Y. B. Hahn, “Large-quantity synthesis of ZnO hollow objects by thermal evaporation: Growth mechanism, structural and optical properties,” Appl. Surf. Sci. 254(11), 3339–3346 (2008).
[CrossRef]

Wagner, V.

Wang, Y.

W. Wu, L. Shi, Q. Zhu, Y. Wang, G. Xu, and W. Pang, “Rapid synthesis of ZnO micro/nanostructures in large scale,” Mater. Lett. 62(1), 159–162 (2008).
[CrossRef]

Wong, W. S.

Wu, W.

W. Wu, L. Shi, Q. Zhu, Y. Wang, G. Xu, and W. Pang, “Rapid synthesis of ZnO micro/nanostructures in large scale,” Mater. Lett. 62(1), 159–162 (2008).
[CrossRef]

Xu, G.

W. Wu, L. Shi, Q. Zhu, Y. Wang, G. Xu, and W. Pang, “Rapid synthesis of ZnO micro/nanostructures in large scale,” Mater. Lett. 62(1), 159–162 (2008).
[CrossRef]

Xu, X. X.

H. B. Zeng, P. S. Liu, W. P. Cai, S. K. Yang, and X. X. Xu, “Controllable Pt/ZnO porous nanocages with improved photocatalytic activity,” J. Phys. Chem. C 112(49), 19620–19624 (2008).
[CrossRef]

Yan, Z. J.

Z. J. Yan, R. Q. Bao, C. M. Busta, and D. B. Chrisey, “Fabrication and formation mechanism of hollow MgO particles by pulsed excimer laser ablation of Mg in liquid,” Nanotechnology 22(26), 265610 (2011).
[CrossRef] [PubMed]

Z. J. Yan, R. Q. Bao, and D. B. Chrisey, “Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid,” Chem. Phys. Lett. 497(4–6), 205–207 (2010).
[CrossRef]

Z. J. Yan, R. Q. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114(26), 11370–11374 (2010).
[CrossRef]

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[CrossRef]

Z. J. Yan, R. Q. Bao, and D. B. Chrisey, “Excimer laser ablation of a Pt target in water: the observation of hollow particles,” Nanotechnology 21(14), 145609 (2010).
[CrossRef] [PubMed]

Yang, S. K.

H. B. Zeng, P. S. Liu, W. P. Cai, S. K. Yang, and X. X. Xu, “Controllable Pt/ZnO porous nanocages with improved photocatalytic activity,” J. Phys. Chem. C 112(49), 19620–19624 (2008).
[CrossRef]

H. B. Zeng, Z. G. Li, W. P. Cai, B. Q. Cao, P. S. Liu, and S. K. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[CrossRef] [PubMed]

Yang, Z.

X. W. Lou, L. A. Archer, and Z. Yang, “Hollow micro-/nanostructures: synthesis and applications,” Adv. Mater. 20(21), 3987–4019 (2008).
[CrossRef]

Zacharias, M.

H. J. Fan, U. Gösele, and M. Zacharias, “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review,” Small 3(10), 1660–1671 (2007).
[CrossRef] [PubMed]

Zeng, H. B.

H. B. Zeng, P. S. Liu, W. P. Cai, S. K. Yang, and X. X. Xu, “Controllable Pt/ZnO porous nanocages with improved photocatalytic activity,” J. Phys. Chem. C 112(49), 19620–19624 (2008).
[CrossRef]

H. B. Zeng, Z. G. Li, W. P. Cai, B. Q. Cao, P. S. Liu, and S. K. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[CrossRef] [PubMed]

Zhao, M. W.

M. Chen, X. D. Liu, Y. H. Liu, and M. W. Zhao, “Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets,” J. Appl. Phys. 111(10), 103108 (2012).
[CrossRef]

Zhu, Q.

W. Wu, L. Shi, Q. Zhu, Y. Wang, G. Xu, and W. Pang, “Rapid synthesis of ZnO micro/nanostructures in large scale,” Mater. Lett. 62(1), 159–162 (2008).
[CrossRef]

Adv. Mater. (1)

X. W. Lou, L. A. Archer, and Z. Yang, “Hollow micro-/nanostructures: synthesis and applications,” Adv. Mater. 20(21), 3987–4019 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

A. Umar and Y. B. Hahn, “Large-quantity synthesis of ZnO hollow objects by thermal evaporation: Growth mechanism, structural and optical properties,” Appl. Surf. Sci. 254(11), 3339–3346 (2008).
[CrossRef]

Cellulose (1)

C. Katepetch, R. Rujiravanit, and H. Tamura, “Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis,” Cellulose 20(3), 1275–1292 (2013).
[CrossRef]

Chem. Mater. (1)

O. Altuntasoglu, Y. Matsuda, S. Ida, and Y. Matsumoto, “Syntheses of zinc oxide and zinc hydroxide single nanosheets,” Chem. Mater. 22(10), 3158–3164 (2010).
[CrossRef]

Chem. Phys. Lett. (1)

Z. J. Yan, R. Q. Bao, and D. B. Chrisey, “Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid,” Chem. Phys. Lett. 497(4–6), 205–207 (2010).
[CrossRef]

Ind. Eng. Chem. Res. (1)

K. Matsuyama, K. Mishima, T. Kato, and K. Ohara, “Preparation of hollow ZnO microspheres using poly(methyl methacrylate) as a template with supercritical CO2-ethanol solution,” Ind. Eng. Chem. Res. 49(18), 8510–8517 (2010).
[CrossRef]

J. Appl. Phys. (1)

M. Chen, X. D. Liu, Y. H. Liu, and M. W. Zhao, “Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets,” J. Appl. Phys. 111(10), 103108 (2012).
[CrossRef]

J. Phys. Chem. B (1)

H. B. Zeng, Z. G. Li, W. P. Cai, B. Q. Cao, P. S. Liu, and S. K. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. C (3)

H. B. Zeng, P. S. Liu, W. P. Cai, S. K. Yang, and X. X. Xu, “Controllable Pt/ZnO porous nanocages with improved photocatalytic activity,” J. Phys. Chem. C 112(49), 19620–19624 (2008).
[CrossRef]

Z. J. Yan, R. Q. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114(26), 11370–11374 (2010).
[CrossRef]

Z. J. Yan, R. Q. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (2)

J. Mellqvist, H. Axelsson, and A. Rosen, “Doas for flue gas monitoring-III. In-Situ monitoring of sulfur dioxide, nitrogen monoxide and ammonia,” J. Quant. Spectrosc. Radiat. Transf. 56(2), 225–240 (1996).
[CrossRef]

J. Mellqvist and A. Rosen, “Doas for flue gas monitoring-II. deviations from the beer-lamert law for the U.V/Visble absorption spectra of NO,NO2, SO2 and NH3,” J. Quant. Spectrosc. Radiat. Transf. 56(2), 209–224 (1996).
[CrossRef]

Mater. Lett. (1)

W. Wu, L. Shi, Q. Zhu, Y. Wang, G. Xu, and W. Pang, “Rapid synthesis of ZnO micro/nanostructures in large scale,” Mater. Lett. 62(1), 159–162 (2008).
[CrossRef]

Nanotechnology (2)

Z. J. Yan, R. Q. Bao, and D. B. Chrisey, “Excimer laser ablation of a Pt target in water: the observation of hollow particles,” Nanotechnology 21(14), 145609 (2010).
[CrossRef] [PubMed]

Z. J. Yan, R. Q. Bao, C. M. Busta, and D. B. Chrisey, “Fabrication and formation mechanism of hollow MgO particles by pulsed excimer laser ablation of Mg in liquid,” Nanotechnology 22(26), 265610 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Small (1)

H. J. Fan, U. Gösele, and M. Zacharias, “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review,” Small 3(10), 1660–1671 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) (b)The representative TEM images of the nano-particles by laser ablation of Zn metal in deionized water and activated liquid(Vwater:Vammonia = 7:1), respectively. (c)(d) HRTEM images of the typical nano-sphere and nano-cages structures, respectively.

Fig. 2
Fig. 2

TEM image of interconnect ZnO nano-cages generated by laser ablation of Zn metal in liquid (Vwater:Vammonia = 5:1), the typical regions of nano-cages, hollows and amorphous materials are marked by blue, yellow and red lines, respectively.

Fig. 3
Fig. 3

(a)(b)XRD patterns of the nano-particles prepared in deionized water and activated liquid(Vwater:Vammonia = 5:1), respectively.

Fig. 4
Fig. 4

(a)(b) The low and high resolution SEM images of the ZnO/Zn(OH)2 hybrid nano-spheres from deionied water, respectively. (e)The energy dispersive spectrum(EDS) of the nano-spheres placed on the silicon wafers indicating the presence of zinc and oxygen only. (c)(d) Overall and enlarged SEM images of the typical flower-like ZnO nano-structures obtained in activated liquid (Vwater:Vammonia = 5:1), respectively. (f) The EDS pattern of flower like ZnO nano-structures shows zinc, oxygen as well as nitrogen element.

Fig. 5
Fig. 5

(a)The UV-visible optical absorption spectrums of ZnO/Zn(OH)2 hybrid nano-composites and ZnO nano-cages produced in deionized water and activated liquid (Vwater:Vammonia = 5:1), respectively.(b) The schematic growth diagram of ZnO porous nano-cages by laser ablation of Zn metal in ammonia water.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Zn 2+ + 2OH Zn ( OH ) 2
Zn ( OH ) 2 +4 NH 3 Zn ( NH 3 ) 4 2+ + 2OH

Metrics